BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 15099800)

  • 41. Evaluation of 9.4-T MR microimaging in assessing normal and defective fetal bone development: comparison of MR imaging and histological findings.
    Ichikawa Y; Sumi M; Ohwatari N; Komori T; Sumi T; Shibata H; Furuichi T; Yamaguchi A; Nakamura T
    Bone; 2004 Apr; 34(4):619-28. PubMed ID: 15050892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a novel frameshift mutation (383insT) in the RUNX2 (PEBP2 alpha/CBFA1/AML3) gene in a Japanese patient with cleidocranial dysplasia.
    Goseki-Sone M; Orimo H; Watanabe A; Hamatani R; Yokozeki M; Ohyama K; Kuroda T; Watanabe H; Miyazaki H; Shimada T; Oida S
    J Bone Miner Metab; 2001; 19(4):263-6. PubMed ID: 11448020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia.
    Mundlos S; Otto F; Mundlos C; Mulliken JB; Aylsworth AS; Albright S; Lindhout D; Cole WG; Henn W; Knoll JH; Owen MJ; Mertelsmann R; Zabel BU; Olsen BR
    Cell; 1997 May; 89(5):773-9. PubMed ID: 9182765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel Mutation of Cleidocranial Dysplasia-related Frameshift Runt-related Transcription Factor 2 in a Sporadic Chinese Case.
    Qin XY; Jia PZ; Zhao HX; Li WR; Chen F; Lin JX
    Chin Med J (Engl); 2017 Jan; 130(2):165-170. PubMed ID: 28091408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation.
    Jaruga A; Hordyjewska E; Kandzierski G; Tylzanowski P
    Clin Genet; 2016 Nov; 90(5):393-402. PubMed ID: 27272193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A case of a Japanese patient with cleidocranial dysplasia possessing a mutation of CBFA1 gene.
    Sakai N; Hasegawa H; Yamazaki Y; Ui K; Tokunaga K; Hirose R; Uchinuma E; Susami T; Takato T
    J Craniofac Surg; 2002 Jan; 13(1):31-4. PubMed ID: 11886988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice.
    Aberg T; Cavender A; Gaikwad JS; Bronckers AL; Wang X; Waltimo-Sirén J; Thesleff I; D'Souza RN
    J Histochem Cytochem; 2004 Jan; 52(1):131-9. PubMed ID: 14688224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Type II/III Runx2/Cbfa1 is required for tooth germ development.
    Kobayashi I; Kiyoshima T; Wada H; Matsuo K; Nonaka K; Honda JY; Koyano K; Sakai H
    Bone; 2006 Jun; 38(6):836-44. PubMed ID: 16377268
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nicotinamide Improves Delayed Tooth Eruption in
    Yoon H; Kim HJ; Shin HR; Kim BS; Kim WJ; Cho YD; Ryoo HM
    J Dent Res; 2021 Apr; 100(4):423-431. PubMed ID: 33143523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia.
    Zhou G; Chen Y; Zhou L; Thirunavukkarasu K; Hecht J; Chitayat D; Gelb BD; Pirinen S; Berry SA; Greenberg CR; Karsenty G; Lee B
    Hum Mol Genet; 1999 Nov; 8(12):2311-6. PubMed ID: 10545612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Animal model: skeletal anomalies in mice with cleidocranial dysplasia.
    Sillence DO; Ritchie HE; Selby PB
    Am J Med Genet; 1987 May; 27(1):75-85. PubMed ID: 3605208
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PEBP2alphaA/CBFA1 mutations in Japanese cleidocranial dysplasia patients.
    Zhang YW; Yasui N; Kakazu N; Abe T; Takada K; Imai S; Sato M; Nomura S; Ochi T; Okuzumi S; Nogami H; Nagai T; Ohashi H; Ito Y
    Gene; 2000 Feb; 244(1-2):21-8. PubMed ID: 10689183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional analysis of RUNX2 mutations in cleidocranial dysplasia: novel insights into genotype-phenotype correlations.
    Yoshida T; Kanegane H; Osato M; Yanagida M; Miyawaki T; Ito Y; Shigesada K
    Blood Cells Mol Dis; 2003; 30(2):184-93. PubMed ID: 12732182
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-dose estrogen-induced osteogenesis is decreased in aged RUNX2(+/-) mice.
    Jüttner KV; Perry MJ
    Bone; 2007 Jul; 41(1):25-32. PubMed ID: 17475575
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tooth formation and eruption - lessons learnt from cleidocranial dysplasia.
    Kreiborg S; Jensen BL
    Eur J Oral Sci; 2018 Oct; 126 Suppl 1():72-80. PubMed ID: 30178560
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia.
    Bergwitz C; Prochnau A; Mayr B; Kramer FJ; Rittierodt M; Berten HL; Hausamen JE; Brabant G
    J Inherit Metab Dis; 2001 Nov; 24(6):648-56. PubMed ID: 11768584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice.
    D'Souza RN; Aberg T; Gaikwad J; Cavender A; Owen M; Karsenty G; Thesleff I
    Development; 1999 Jul; 126(13):2911-20. PubMed ID: 10357935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.
    Otto F; Thornell AP; Crompton T; Denzel A; Gilmour KC; Rosewell IR; Stamp GW; Beddington RS; Mundlos S; Olsen BR; Selby PB; Owen MJ
    Cell; 1997 May; 89(5):765-71. PubMed ID: 9182764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption.
    Zeng L; He H; Sun M; Gong X; Zhou M; Hong Y; Wu Y; Chen X; Chen Q
    Stem Cell Res Ther; 2022 Sep; 13(1):486. PubMed ID: 36175952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of the cleidocranial dysplasia-related novel 1116_1119insC mutation in the RUNX2 gene on the biological function of mesenchymal cells.
    Ding B; Li C; Xuan K; Liu N; Tang L; Liu Y; Guo W; Liu W; Jin Y
    Eur J Med Genet; 2013 Apr; 56(4):180-7. PubMed ID: 23376464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.