These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15100039)

  • 1. The use of stable isotopes and spectroscopy to investigate the energy transducing function of cytochrome c oxidase.
    Schmidt B; Hillier W; McCracken J; Ferguson-Miller S
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):248-55. PubMed ID: 15100039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox dependent changes at the heme propionates in cytochrome c oxidase from Paracoccus denitrificans: direct evidence from FTIR difference spectroscopy in combination with heme propionate 13C labeling.
    Behr J; Hellwig P; Mäntele W; Michel H
    Biochemistry; 1998 May; 37(20):7400-6. PubMed ID: 9585554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutants of the CuA site in cytochrome c oxidase of Rhodobacter sphaeroides: I. Spectral and functional properties.
    Zhen Y; Schmidt B; Kang UG; Antholine W; Ferguson-Miller S
    Biochemistry; 2002 Feb; 41(7):2288-97. PubMed ID: 11841221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-dependent electron transfer from CuA to heme a and altered EPR spectra in mutants close to heme a of cytochrome oxidase.
    Mills DA; Xu S; Geren L; Hiser C; Qin L; Sharpe MA; McCracken J; Durham B; Millett F; Ferguson-Miller S
    Biochemistry; 2008 Nov; 47(44):11499-509. PubMed ID: 18847227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATR-FTIR spectroscopy and isotope labeling of the PM intermediate of Paracoccus denitrificans cytochrome c oxidase.
    Iwaki M; Puustinen A; Wikström M; Rich PR
    Biochemistry; 2004 Nov; 43(45):14370-8. PubMed ID: 15533041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct detection of formate ligation in cytochrome c oxidase by ATR-FTIR spectroscopy.
    Iwaki M; Rich PR
    J Am Chem Soc; 2004 Mar; 126(8):2386-9. PubMed ID: 14982444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA.
    García-Horsman JA; Berry E; Shapleigh JP; Alben JO; Gennis RB
    Biochemistry; 1994 Mar; 33(10):3113-9. PubMed ID: 8130226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical and ultraviolet/visible/infrared spectroscopic analysis of heme a and a3 redox reactions in the cytochrome c oxidase from Paracoccus denitrificans: separation of heme a and a3 contributions and assignment of vibrational modes.
    Hellwig P; Grzybek S; Behr J; Ludwig B; Michel H; Mäntele W
    Biochemistry; 1999 Feb; 38(6):1685-94. PubMed ID: 10026246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the structural subunits required for formation of the metal centers in subunit I of cytochrome c oxidase of Rhodobacter sphaeroides.
    Bratton MR; Hiser L; Antholine WE; Hoganson C; Hosler JP
    Biochemistry; 2000 Oct; 39(42):12989-95. PubMed ID: 11041864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A continuous wave and pulsed EPR characterization of the Mn2+ binding site in Rhodobacter sphaeroides cytochrome c oxidase.
    Espe MP; Hosler JP; Ferguson-Miller S; Babcock GT; McCracken J
    Biochemistry; 1995 Jun; 34(23):7593-602. PubMed ID: 7779805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and chemical changes of the P(M) intermediate of paracoccus denitrificans cytochrome c oxidase revealed by IR spectroscopy with labeled tyrosines and histidine.
    Iwaki M; Puustinen A; Wikström M; Rich PR
    Biochemistry; 2006 Sep; 45(36):10873-85. PubMed ID: 16953573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase.
    McMahon BH; Fabian M; Tomson F; Causgrove TP; Bailey JA; Rein FN; Dyer RB; Palmer G; Gennis RB; Woodruff WH
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):321-31. PubMed ID: 15100047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site.
    Hosler JP; Shapleigh JP; Mitchell DM; Kim Y; Pressler MA; Georgiou C; Babcock GT; Alben JO; Ferguson-Miller S; Gennis RB
    Biochemistry; 1996 Aug; 35(33):10776-83. PubMed ID: 8718868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuated total reflection Fourier transform infrared studies of redox changes in bovine cytochrome c oxidase: resolution of the redox Fourier transform infrared difference spectrum of heme a(3).
    Rich PR; Breton J
    Biochemistry; 2002 Jan; 41(3):967-73. PubMed ID: 11790120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P
    Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the conserved arginine pair in proton and electron transfer in cytochrome C oxidase.
    Qian J; Mills DA; Geren L; Wang K; Hoganson CW; Schmidt B; Hiser C; Babcock GT; Durham B; Millett F; Ferguson-Miller S
    Biochemistry; 2004 May; 43(19):5748-56. PubMed ID: 15134449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of site-directed mutants locates a non-redox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides.
    Hosler JP; Espe MP; Zhen Y; Babcock GT; Ferguson-Miller S
    Biochemistry; 1995 Jun; 34(23):7586-92. PubMed ID: 7779804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing protein-cofactor interactions in the terminal oxidases by second derivative spectroscopy: study of bacterial enzymes with cofactor substitutions and heme A model compounds.
    Felsch JS; Horvath MP; Gursky S; Hobaugh MR; Goudreau PN; Fee JA; Morgan WT; Admiraal SJ; Ikeda-Saito M; Fujiwara T
    Protein Sci; 1994 Nov; 3(11):2097-103. PubMed ID: 7703856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.