BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15100788)

  • 1. Use of floating electrodes in transient isotachophoresis to increase the sensitivity of detection.
    Kurnik RT; Boone TD; Nguyen U; Ricco AJ; Williams SJ
    Lab Chip; 2003 May; 3(2):86-92. PubMed ID: 15100788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices.
    Wainright A; Nguyen UT; Bjornson T; Boone TD
    Electrophoresis; 2003 Nov; 24(21):3784-92. PubMed ID: 14613206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a segmented model for a continuous electrophoretic moving bed enantiomer separation.
    Thome BM; Ivory CF
    Biotechnol Prog; 2003; 19(6):1703-12. PubMed ID: 14656145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-cross hydrostatic pressure sample injection for chip CE: variable sample plug volume and minimum number of electrodes.
    Luo Y; Wu D; Zeng S; Gai H; Long Z; Shen Z; Dai Z; Qin J; Lin B
    Anal Chem; 2006 Sep; 78(17):6074-80. PubMed ID: 16944886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotachophoresis preconcentration integrated microfluidic chip for highly sensitive genotyping of the hepatitis B virus.
    Liu D; Shi M; Huang H; Long Z; Zhou X; Qin J; Lin B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):32-8. PubMed ID: 16899416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-column conductivity detection in capillary-chip electrophoresis.
    Wu ZY; Fang F; Josserand J; Girault HH
    Electrophoresis; 2007 Dec; 28(24):4612-9. PubMed ID: 18008311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and simulation of sample pinching utilizing microelectrodes in capillary electrophoresis microchips.
    Lin YC; Wu WM; Fan CS
    Lab Chip; 2004 Feb; 4(1):60-4. PubMed ID: 15007442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and variable-volume sample loading in sieving electrophoresis microchips using negative pressure combined with electrokinetic force.
    Qi LY; Yin XF; Zhang L; Wang M
    Lab Chip; 2008 Jul; 8(7):1137-44. PubMed ID: 18584090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes.
    Stone VN; Baldock SJ; Croasdell LA; Dillon LA; Fielden PR; Goddard NJ; Thomas CL; Treves Brown BJ
    J Chromatogr A; 2007 Jul; 1155(2):199-205. PubMed ID: 17229431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of reservoir potentials on the analyte behavior in microchip electrophoresis: computer simulation and experimental validation for DNA fragments.
    Xu Z; Nakamura Y; Hirokawa T
    Electrophoresis; 2005 Jan; 26(2):383-90. PubMed ID: 15657886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary and microfluidic gradient elution isotachophoresis coupled to capillary zone electrophoresis for femtomolar amino acid detection limits.
    Davis NI; Mamunooru M; Vyas CA; Shackman JG
    Anal Chem; 2009 Jul; 81(13):5452-9. PubMed ID: 19476344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoelectric focusing in a microfluidically defined electrophoresis channel.
    Shimura K; Takahashi K; Koyama Y; Sato K; Kitamori T
    Anal Chem; 2008 May; 80(10):3818-23. PubMed ID: 18407668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous dielectrophoretic cell separation microfluidic device.
    Li Y; Dalton C; Crabtree HJ; Nilsson G; Kaler KV
    Lab Chip; 2007 Feb; 7(2):239-48. PubMed ID: 17268627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductivity detection on microchips.
    Hergenröder R; Grass B
    Methods Mol Biol; 2006; 339():113-26. PubMed ID: 16790870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique.
    Zhang L; Yin XF
    J Chromatogr A; 2006 Dec; 1137(2):243-8. PubMed ID: 17055523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shah convolution Fourier transform detection: multiple-sample injection technique.
    Kwok YC; Manz A
    Electrophoresis; 2001 Jan; 22(2):222-9. PubMed ID: 11288888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual stacking of unbuffered saline samples, transient isotachophoresis plus induced pH junction focusing.
    Shim SH; Riaz A; Choi K; Chung DS
    Electrophoresis; 2003 May; 24(10):1603-11. PubMed ID: 12761790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open source simulation tool for electrophoretic stacking, focusing, and separation.
    Bercovici M; Lele SK; Santiago JG
    J Chromatogr A; 2009 Feb; 1216(6):1008-18. PubMed ID: 19124132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.