BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 15100791)

  • 1. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection.
    Nugen SR; Asiello PJ; Connelly JT; Baeumner AJ
    Biosens Bioelectron; 2009 Apr; 24(8):2428-33. PubMed ID: 19168346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of DNA microarrays onto polymer substrates using UV modification protocols with integration into microfluidic platforms for the sensing of low-abundant DNA point mutations.
    Soper SA; Hashimoto M; Situma C; Murphy MC; McCarley RL; Cheng YW; Barany F
    Methods; 2005 Sep; 37(1):103-13. PubMed ID: 16199178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip.
    Hong JW; Chung KH; Yoon HC
    Analyst; 2008 Apr; 133(4):499-504. PubMed ID: 18365120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and simple immunosensing system for simultaneous detection of tumor markers based on negative-dielectrophoretic manipulation of microparticles.
    Lee HJ; Lee SH; Yasukawa T; Ramón-Azcón J; Mizutani F; Ino K; Shiku H; Matsue T
    Talanta; 2010 Apr; 81(1-2):657-63. PubMed ID: 20188978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
    Sameenoi Y; Mensack MM; Boonsong K; Ewing R; Dungchai W; Chailapakul O; Cropek DM; Henry CS
    Analyst; 2011 Aug; 136(15):3177-84. PubMed ID: 21698305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.
    Hashimoto M; Hupert ML; Murphy MC; Soper SA; Cheng YW; Barany F
    Anal Chem; 2005 May; 77(10):3243-55. PubMed ID: 15889915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations.
    Qu S; Chen X; Chen D; Yang P; Chen G
    Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples.
    Messina GA; Panini NV; Martinez NA; Raba J
    Anal Biochem; 2008 Sep; 380(2):262-7. PubMed ID: 18577366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting elastomer surface texturing: a path to electrode spotting. Application to the biochip production.
    Marquette CA; Blum LJ
    Biosens Bioelectron; 2004 Sep; 20(2):197-203. PubMed ID: 15308222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes.
    Chen CM; Chang GL; Lin CH
    J Chromatogr A; 2008 Jun; 1194(2):231-6. PubMed ID: 18485353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays.
    Yang D; Liu X; Jin Y; Zhu Y; Zeng D; Jiang X; Ma H
    Biomacromolecules; 2009 Dec; 10(12):3335-40. PubMed ID: 19924999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature.
    Duan H; Zhang L; Chen G
    J Chromatogr A; 2010 Jan; 1217(1):160-6. PubMed ID: 19945714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.