These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 15100801)

  • 1. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter.
    Wolff A; Perch-Nielsen IR; Larsen UD; Friis P; Goranovic G; Poulsen CR; Kutter JP; Telleman P
    Lab Chip; 2003 Feb; 3(1):22-7. PubMed ID: 15100801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic gating valve for microfluidic fluorescence-activated cell sorting.
    Chen P; Feng X; Hu R; Sun J; Du W; Liu BF
    Anal Chim Acta; 2010 Mar; 663(1):1-6. PubMed ID: 20172088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfabricated fluorescence-activated cell sorter.
    Fu AY; Spence C; Scherer A; Arnold FH; Quake SR
    Nat Biotechnol; 1999 Nov; 17(11):1109-11. PubMed ID: 10545919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for flow cytometric analysis of cells and particles.
    Huh D; Gu W; Kamotani Y; Grotberg JB; Takayama S
    Physiol Meas; 2005 Jun; 26(3):R73-98. PubMed ID: 15798290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip high-speed sorting of micron-sized particles for high-throughput analysis.
    Holmes D; Sandison ME; Green NG; Morgan H
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):129-35. PubMed ID: 16441169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully microfabricated and integrated SU-8-based capillary electrophoresis-electrospray ionization microchips for mass spectrometry.
    Sikanen T; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Dec; 79(23):9135-44. PubMed ID: 17973354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: Implications to cells.
    Mollet M; Godoy-Silva R; Berdugo C; Chalmers JJ
    Biotechnol Bioeng; 2008 Jun; 100(2):260-72. PubMed ID: 18078288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter.
    Scott R; Sethu P; Harnett CK
    Rev Sci Instrum; 2008 Apr; 79(4):046104. PubMed ID: 18447562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, characterization and manipulation of Babesia-bovis-infected red blood cells using microfluidics technology.
    Nascimento E; Silva T; Oliva A
    Parassitologia; 2007 May; 49 Suppl 1():45-52. PubMed ID: 17691607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system.
    Buhlmann C; Preckel T; Chan S; Luedke G; Valer M
    J Biomol Tech; 2003 Jun; 14(2):119-27. PubMed ID: 14676310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining blood cell size using microfluidic hydrodynamics.
    Inglis DW; Davis JA; Zieziulewicz TJ; Lawrence DA; Austin RH; Sturm JC
    J Immunol Methods; 2008 Jan; 329(1-2):151-6. PubMed ID: 18036608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.