These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15100809)

  • 1. Pile-up glass microreactor.
    Kikutani Y; Hibara A; Uchiyama K; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2002 Nov; 2(4):193-6. PubMed ID: 15100809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass microchip with three-dimensional microchannel network for 2 x 2 parallel synthesis.
    Kikutani Y; Horiuchi T; Uchiyama K; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2002 Nov; 2(4):188-92. PubMed ID: 15100808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared spectroscopy for chemically specific sensing in silicon-based microreactors.
    Herzig-Marx R; Queeney KT; Jackman RJ; Schmidt MA; Jensen KF
    Anal Chem; 2004 Nov; 76(21):6476-83. PubMed ID: 15516144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-dispersive diffraction with synchrotron radiation and a germanium detector.
    Honkimäki V; Suortti P
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):331-8. PubMed ID: 17587658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. I-shaped microchannel array chip for parallel electrophoretic analyses.
    Inoue A; Ito T; Makino K; Hosokawa K; Maeda M
    Anal Chem; 2007 Mar; 79(5):2168-73. PubMed ID: 17269791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-channel microreactor for gas-liquid syntheses.
    Park CP; Kim DP
    J Am Chem Soc; 2010 Jul; 132(29):10102-6. PubMed ID: 20593807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid bonding of Pyrex glass microchips.
    Akiyama Y; Morishima K; Kogi A; Kikutani Y; Tokeshi M; Kitamori T
    Electrophoresis; 2007 Mar; 28(6):994-1001. PubMed ID: 17370301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Countercurrent multistage fluidized bed reactor for immobilized biocatalysts: III. Hydrodynamic aspects.
    Vos HJ; van Houwelingen C; Zomerdijk M; Luyben KC
    Biotechnol Bioeng; 1990 Aug; 36(4):387-96. PubMed ID: 18595092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters.
    Das S; Srivastava VC
    Photochem Photobiol Sci; 2016 Jun; 15(6):714-30. PubMed ID: 27193741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century?
    Geyer K; Codée JD; Seeberger PH
    Chemistry; 2006 Nov; 12(33):8434-42. PubMed ID: 16991184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane and carbon dioxide emission in a two-phase olive oil mill sludge windrow pile during composting.
    Manios T; Maniadakis K; Boutzakis P; Naziridis Y; Lasaridi K; Markakis G; Stentiford EI
    Waste Manag; 2007; 27(9):1092-8. PubMed ID: 16904884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Area-selective formation of macropore array by anisotropic electrochemical etching on an n-Si(100) surface in aqueous HF solution.
    Homma T; Sato H; Mori K; Osaka T; Shoji S
    J Phys Chem B; 2005 Mar; 109(12):5724-7. PubMed ID: 16851620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network.
    Kikutani Y; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2004 Aug; 4(4):328-32. PubMed ID: 15269799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles.
    Zhao Y; Carvajal MT; Won YY; Harris MT
    Langmuir; 2007 Dec; 23(25):12489-96. PubMed ID: 17990899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.
    Yoon TH; Jung SH; Kim DP
    J Nanosci Nanotechnol; 2011 May; 11(5):4295-9. PubMed ID: 21780445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid synthesis of iron phosphate nanoparticles via surface-mediated spontaneous reaction for the growth of high-yield, single-walled carbon nanotubes.
    Yang HJ; Song HJ; Shin HJ; Choi HC
    Langmuir; 2005 Sep; 21(20):9098-102. PubMed ID: 16171338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental fluorine. Part 16. Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out.
    Chambers RD; Fox MA; Holling D; Nakano T; Okazoe T; Sandford G
    Lab Chip; 2005 Feb; 5(2):191-8. PubMed ID: 15672134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.
    Liu J; Lin S; Qi D; Deng C; Yang P; Zhang X
    J Chromatogr A; 2007 Dec; 1176(1-2):169-77. PubMed ID: 18021785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.