These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15100817)

  • 1. A pressure driven injection system for an ultra-flat chromatographic microchannel.
    Chmela E; Blom MT; Gardeniers HJ; van den Berg A; Tijssen R
    Lab Chip; 2002 Nov; 2(4):235-41. PubMed ID: 15100817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and assessment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels.
    Penrose A; Myers P; Bartle K; McCrossen S
    Analyst; 2004 Aug; 129(8):704-9. PubMed ID: 15284912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pillar-structured microchannels for on-chip liquid chromatography: evaluation of the permeability and separation performance.
    De Pra M; De Malsche W; Desmet G; Schoenmakers PJ; Kok WT
    J Sep Sci; 2007 Jul; 30(10):1453-60. PubMed ID: 17623425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule transport, concentration and alignment in enclosed microfluidic channels.
    Huang YM; Uppalapati M; Hancock WO; Jackson TN
    Biomed Microdevices; 2007 Apr; 9(2):175-84. PubMed ID: 17195111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic protease activity assay based on the detection of fluorescence polarization.
    Kim JH; Shin HJ; Cho H; Kwak SM; Cho H; Kim TS; Kang JY; Yang EG
    Anal Chim Acta; 2006 Sep; 577(2):171-7. PubMed ID: 17723668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample dispersion for segmented flow in microchannels with rectangular cross section.
    Kreutzer MT; Günther A; Jensen KF
    Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and variable-volume sample loading in sieving electrophoresis microchips using negative pressure combined with electrokinetic force.
    Qi LY; Yin XF; Zhang L; Wang M
    Lab Chip; 2008 Jul; 8(7):1137-44. PubMed ID: 18584090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows.
    Huang YZ; Du WB; Pan JZ; Fang Q
    Analyst; 2008 Sep; 133(9):1237-41. PubMed ID: 18709200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automated injection system for sub-micron sized channels used in shear-driven-chromatography.
    De Malsche W; Clicq D; Eghbali H; Fekete V; Gardeniers H; Desmet G
    Lab Chip; 2006 Oct; 6(10):1322-7. PubMed ID: 17102846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chip system for size separation of macromolecules and particles by hydrodynamic chromatography.
    Chmela E; Tijssen R; Blom MT; Gardeniers HJ; van den Berg A
    Anal Chem; 2002 Jul; 74(14):3470-5. PubMed ID: 12139056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetically-driven flow mixing in microchannels with wavy surface.
    Chen CK; Cho CC
    J Colloid Interface Sci; 2007 Aug; 312(2):470-80. PubMed ID: 17442332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation efficiency of particle-packed HPLC microchips.
    Ehlert S; Kraiczek K; Mora JA; Dittmann M; Rozing GP; Tallarek U
    Anal Chem; 2008 Aug; 80(15):5945-50. PubMed ID: 18543954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System-oriented dispersion models of general-shaped electrophoresis microchannels.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Oct; 4(5):453-63. PubMed ID: 15472729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.