These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15100826)

  • 81. An optimised split-and-recombine micro-mixer with uniform chaotic mixing.
    Schönfeld F; Hessel V; Hofmann C
    Lab Chip; 2004 Feb; 4(1):65-9. PubMed ID: 15007443
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Rapid magnetofluidic mixing in a uniform magnetic field.
    Zhu GP; Nguyen NT
    Lab Chip; 2012 Nov; 12(22):4772-80. PubMed ID: 22990170
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays.
    Kim SD; Song SW; Oh DY; Lee AC; Koo JW; Kang T; Kim MC; Lee C; Jeong Y; Jeong HY; Lee D; Cho S; Kwon S; Kim J
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32046141
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.
    Arbabi A; Mastikhin IV
    J Magn Reson; 2012 Dec; 225():36-45. PubMed ID: 23117260
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A study of ultrasound-induced microstreaming in blood vessels of tropical fish.
    Martin CJ; Pratt BM; Watmough DJ
    Br J Cancer Suppl; 1982 Mar; 5():161-4. PubMed ID: 6950754
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Visualization and minimization of disruptive bubble behavior in ultrasonic field.
    Kim W; Park K; Oh J; Choi J; Kim HY
    Ultrasonics; 2010 Aug; 50(8):798-802. PubMed ID: 20462624
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Electrochemical investigations of stable cavitation from bubbles generated during reduction of water.
    Keswani M; Raghavan S; Deymier P
    Ultrason Sonochem; 2014 Sep; 21(5):1893-9. PubMed ID: 24798227
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Experimental study of the liquid flow near a single sonoluminescent bubble.
    Verraes T; Lepoint-Mullie F; Lepoint T; Longuet-Higgins MS
    J Acoust Soc Am; 2000 Jul; 108(1):117-25. PubMed ID: 10923877
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Tunable microfluidic standing air bubbles and its application in acoustic microstreaming.
    Liu J; Li B; Zhu T; Zhou Y; Li S; Guo S; Li T
    Biomicrofluidics; 2019 May; 13(3):034114. PubMed ID: 31186823
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes n-n.
    Inserra C; Regnault G; Cleve S; Mauger C; Doinikov AA
    Phys Rev E; 2020 Jan; 101(1-1):013111. PubMed ID: 32069617
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mixing of spherical bubbles with time-dependent radius in incompressible flows.
    Pérez-Muñuzuri V; Garaboa-Paz D
    Phys Rev E; 2016 Feb; 93(2):023107. PubMed ID: 26986413
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Scattering measurements from a dissolving bubble.
    Kapodistrias G; Dahl PH
    J Acoust Soc Am; 2012 Jun; 131(6):4243-51. PubMed ID: 22712899
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhanced mixing in laminar flows using ultrahydrophobic surfaces.
    Ou J; Moss GR; Rothstein JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016304. PubMed ID: 17677560
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bubble-based acoustic micropropulsors: active surfaces and mixers.
    Bertin N; Spelman TA; Combriat T; Hue H; Stéphan O; Lauga E; Marmottant P
    Lab Chip; 2017 Apr; 17(8):1515-1528. PubMed ID: 28374878
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Extraction of bubble size and number data from an acoustically-excited bubble chain.
    Roshid MM; Manasseh R
    J Acoust Soc Am; 2020 Feb; 147(2):921. PubMed ID: 32113302
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Hydrodynamics and mass transfer of the coaxial jet mixer in flow injection analysis.
    Andreev VP; Koleshko SB; Holman DA; Scampavia LD; Christian GD
    Anal Chem; 1999 Jun; 71(11):2199-204. PubMed ID: 21662757
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A multi-functional bubble-based microfluidic system.
    Khoshmanesh K; Almansouri A; Albloushi H; Yi P; Soffe R; Kalantar-zadeh K
    Sci Rep; 2015 Apr; 5():9942. PubMed ID: 25906043
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Tri-fluid mixing in a microchannel for nanoparticle synthesis.
    Feng X; Ren Y; Hou L; Tao Y; Jiang T; Li W; Jiang H
    Lab Chip; 2019 Sep; 19(17):2936-2946. PubMed ID: 31380864
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Theory and experiment on resonant frequencies of liquid-air interfaces trapped in microfluidic devices.
    Chindam C; Nama N; Ian Lapsley M; Costanzo F; Jun Huang T
    J Appl Phys; 2013 Nov; 114(19):194503. PubMed ID: 24343156
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing.
    Zhang Y; Devendran C; Lupton C; de Marco A; Neild A
    Lab Chip; 2019 Jan; 19(2):262-271. PubMed ID: 30564824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.