These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15100846)

  • 1. An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo-thermal etching.
    Moriguchi H; Wakamoto Y; Sugio Y; Takahashi K; Inoue I; Yasuda K
    Lab Chip; 2002 May; 2(2):125-32. PubMed ID: 15100846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement.
    Suzuki I; Sugio Y; Jimbo Y; Yasuda K
    Lab Chip; 2005 Mar; 5(3):241-7. PubMed ID: 15726199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern modification of a neuronal network for individual-cell-based electrophysiological measurement using photothermal etching of an agarose architecture with a multielectrode array.
    Suzuki I; Sugio Y; Moriguchi H; Hattori A; Yasuda K; Jimbo Y
    IEE Proc Nanobiotechnol; 2004 Jun; 151(3):116-21. PubMed ID: 16475853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching.
    Kojima K; Moriguchi H; Hattori A; Kaneko T; Yasuda K
    Lab Chip; 2003 Nov; 3(4):292-6. PubMed ID: 15007461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture.
    Suzuki I; Sugio Y; Moriguchi H; Jimbo Y; Yasuda K
    J Nanobiotechnology; 2004 Jul; 2(1):7. PubMed ID: 15230976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of beating frequency in cardiac myocytes by their community effect measured by agarose microchamber chip.
    Kojima K; Kaneko T; Yasuda K
    J Nanobiotechnology; 2005 May; 3(1):4. PubMed ID: 15927047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip culture system for observation of isolated individual cells.
    Inoue I; Wakamoto Y; Moriguchi H; Okano K; Yasuda K
    Lab Chip; 2001 Sep; 1(1):50-5. PubMed ID: 15100889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method of cultivating cardiac myocytes in agarose microchamber chips for studying cell synchronization.
    Kojima K; Kaneko T; Yasuda K
    J Nanobiotechnology; 2004 Sep; 2(1):9. PubMed ID: 15357869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a cultivation system of a yeast single cell in a cell chip microchamber.
    Fukuda T; Shiraga S; Kato M; Suye S; Ueda M
    Biotechnol Prog; 2006; 22(4):944-8. PubMed ID: 16889367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise neuronal network pattern formation in agarose gel during cultivation using non-destructive microneedle photothermal microfabrication.
    Tanaka Y; Watanabe H; Shimoda K; Sakamoto K; Hondo Y; Sentoku M; Sekine R; Kikuchi T; Yasuda K
    Sci Rep; 2021 Jul; 11(1):14656. PubMed ID: 34282174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes.
    Matsubara Y; Kerman K; Kobayashi M; Yamamura S; Morita Y; Tamiya E
    Biosens Bioelectron; 2005 Feb; 20(8):1482-90. PubMed ID: 15626601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoslits in silicon chips.
    Aref T; Brenner M; Bezryadin A
    Nanotechnology; 2009 Jan; 20(4):045303. PubMed ID: 19417315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip single-cell-based microcultivation method for analysis of genetic information and epigenetic correlation of cells.
    Yasuda K
    J Mol Recognit; 2004; 17(3):186-93. PubMed ID: 15137028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Nd:YAG laser-mediated thermal damage in rabbit nasal septal cartilage.
    Li C; Protsenko DE; Zemek A; Chae YS; Wong B
    Lasers Surg Med; 2007 Jun; 39(5):451-7. PubMed ID: 17565732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of neuronal sprouting and migration using 780 nm laser phototherapy as procedure for cell therapy.
    Rochkind S; El-Ani D; Nevo Z; Shahar A
    Lasers Surg Med; 2009 Apr; 41(4):277-81. PubMed ID: 19347939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of individual cells by local photo-polymerization on a chip.
    Maruyama H; Arai F; Fukuda T; Katsuragi T
    Analyst; 2005 Mar; 130(3):304-10. PubMed ID: 15724158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay.
    Sugiura S; Edahiro J; Kikuchi K; Sumaru K; Kanamori T
    Biotechnol Bioeng; 2008 Aug; 100(6):1156-65. PubMed ID: 18553395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A picoliter chamber array for cell-free protein synthesis.
    Kinpara T; Mizuno R; Murakami Y; Kobayashi M; Yamaura S; Hasan Q; Morita Y; Nakano H; Yamane T; Tamiya E
    J Biochem; 2004 Aug; 136(2):149-54. PubMed ID: 15496584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond strengths of one- and two-step self-etch adhesive systems.
    Knobloch LA; Gailey D; Azer S; Johnston WM; Clelland N; Kerby RE
    J Prosthet Dent; 2007 Apr; 97(4):216-22. PubMed ID: 17499091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.