BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15100856)

  • 1. Droplet formation in a microchannel network.
    Nisisako T; Torii T; Higuchi T
    Lab Chip; 2002 Feb; 2(1):24-6. PubMed ID: 15100856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability Characteristics of Dispersed Oil Droplets Prepared by the Microchannel Emulsification Method.
    Liu X; Nakajima M; Nabetani H; Xu Q; Ichikawa S; Sano Y
    J Colloid Interface Sci; 2001 Jan; 233(1):23-30. PubMed ID: 11112302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Jun; 21(13):5722-30. PubMed ID: 15952815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacture of large uniform droplets using rotating membrane emulsification.
    Vladisavljević GT; Williams RA
    J Colloid Interface Sci; 2006 Jul; 299(1):396-402. PubMed ID: 16563411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled generation of monodisperse discoid droplets using microchannel arrays.
    Kobayashi I; Uemura K; Nakajima M
    Langmuir; 2006 Dec; 22(26):10893-7. PubMed ID: 17154559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets.
    Yobas L; Martens S; Ong WL; Ranganathan N
    Lab Chip; 2006 Aug; 6(8):1073-9. PubMed ID: 16874381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels.
    Maenaka H; Yamada M; Yasuda M; Seki M
    Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD simulation and analysis of emulsion droplet formation from straight-through microchannels.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2004 Oct; 20(22):9868-77. PubMed ID: 15491227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis.
    Yamada M; Doi S; Maenaka H; Yasuda M; Seki M
    J Colloid Interface Sci; 2008 May; 321(2):401-7. PubMed ID: 18342873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip.
    Yang CH; Huang KS; Chang JY
    Biomed Microdevices; 2007 Apr; 9(2):253-9. PubMed ID: 17180710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip.
    Ueno K; Kitagawa F; Kitamura N
    Lab Chip; 2002 Nov; 2(4):231-4. PubMed ID: 15100816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries.
    Hashimoto M; Shevkoplyas SS; Zasońska B; Szymborski T; Garstecki P; Whitesides GM
    Small; 2008 Oct; 4(10):1795-805. PubMed ID: 18819139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel synchronization of two trains of droplets using a railroad-like channel network.
    Ahn B; Lee K; Lee H; Panchapakesan R; Oh KW
    Lab Chip; 2011 Dec; 11(23):3956-62. PubMed ID: 21993857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of droplet acceleration and collision in the gas phase in a microchannel.
    Takahashi K; Sugii Y; Mawatari K; Kitamori T
    Lab Chip; 2011 Sep; 11(18):3098-105. PubMed ID: 21826292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase behavior and kinetics of phase separation of a nonionic microemulsion of C12E5/water/1-chlorotetradecane upon a temperature quench.
    Roshan Deen G; Oliveira CL; Pedersen JS
    J Phys Chem B; 2009 May; 113(20):7138-46. PubMed ID: 19438277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.