BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15100880)

  • 1. Acousto-optical deflection-based whole channel scanning for microchip isoelectric focusing with laser-induced fluorescence detection.
    Sanders JC; Huang Z; Landers JP
    Lab Chip; 2001 Dec; 1(2):167-72. PubMed ID: 15100880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced fluorescence detection on multichannel electrophoretic microchips using microprocessor-embedded acousto-optic laser beam scanning.
    Huang Z; Jin L; Sanders JC; Zheng Y; Dunsmoor C; Tian H; Landers JP
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):859-66. PubMed ID: 12148825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in capillary isoelectric focusing with whole-column imaging detection.
    Fang X; Tragas C; Wu J; Mao Q; Pawliszyn J
    Electrophoresis; 1998 Oct; 19(13):2290-5. PubMed ID: 9788311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microchip isoelectric focusing using a miniature scanning detection system.
    Raisi F; Belgrader P; Borkholder DA; Herr AE; Kintz GJ; Pourhamadi F; Taylor MT; Northrup MA
    Electrophoresis; 2001 Jul; 22(11):2291-5. PubMed ID: 11504064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed, whole-column fluorescence imaging detection for isoelectric focusing on a microchip using an organic light emitting diode as light source.
    Yao B; Yang H; Liang Q; Luo G; Wang L; Ren K; Gao Y; Wang Y; Qiu Y
    Anal Chem; 2006 Aug; 78(16):5845-50. PubMed ID: 16906731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoelectric focusing in a microfluidically defined electrophoresis channel.
    Shimura K; Takahashi K; Koyama Y; Sato K; Kitamori T
    Anal Chem; 2008 May; 80(10):3818-23. PubMed ID: 18407668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of capillary isoelectric focusing with liquid-core waveguide laser-induced fluorescence whole-column imaging detection.
    Liu Z; Pawliszyn J
    Anal Biochem; 2005 Jan; 336(1):94-101. PubMed ID: 15582563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Array based capillary IEF with a whole column image of laser-induced fluorescence in coupling to capillary RPLC as a comprehensive 2-D separation system for proteome analysis.
    Mao Y; Li Y; Zhang X
    Proteomics; 2006 Jan; 6(2):420-6. PubMed ID: 16317775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole column fluorescence imaging on a microchip by using a programmed organic light emitting diode array as a spatial-scanning light source and a single photomultiplier tube as detector.
    Ren K; Liang Q; Yao B; Luo G; Wang L; Gao Y; Wang Y; Qiu Y
    Lab Chip; 2007 Nov; 7(11):1574-80. PubMed ID: 17960288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips.
    Huang Z; Munro N; Hühmer AF; Landers JP
    Anal Chem; 1999 Dec; 71(23):5309-14. PubMed ID: 10596211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of isoelectric focusing with multi-channel gel electrophoresis by using microfluidic pseudo-valves.
    Das C; Zhang J; Denslow ND; Fan ZH
    Lab Chip; 2007 Dec; 7(12):1806-12. PubMed ID: 18030404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device.
    Das C; Fan ZH
    Electrophoresis; 2006 Sep; 27(18):3619-26. PubMed ID: 16915565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabrication of a tapered channel for isoelectric focusing with thermally generated pH gradient.
    Huang T; Pawliszyn J
    Electrophoresis; 2002 Oct; 23(20):3504-10. PubMed ID: 12412118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-induced fluorescence detector for capillary-based isoelectric immunoblot assay.
    Knittle JE; Roach D; Horn PB; Voss KO
    Anal Chem; 2007 Dec; 79(24):9478-83. PubMed ID: 18020314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved protein separation by microchip isoelectric focusing with stepwise gradient of electric field strength.
    Cong Y; Liang Y; Zhang L; Zhang W; Zhang Y
    J Sep Sci; 2009 Feb; 32(3):462-5. PubMed ID: 19173333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel isoelectric focusing II.
    Zilberstein GV; Baskin EM; Bukshpan S; Korol LE
    Electrophoresis; 2004 Nov; 25(21-22):3643-51. PubMed ID: 15565700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome.
    Kim KH; Moon MH
    J Proteome Res; 2009 Sep; 8(9):4272-8. PubMed ID: 19653698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized capillary isoelectric focusing in plastic microfluidic devices.
    Tan W; Fan ZH; Qiu CX; Ricco AJ; Gibbons I
    Electrophoresis; 2002 Oct; 23(20):3638-45. PubMed ID: 12412135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic kinetic capillary isoelectric focusing: a powerful tool for studying protein-DNA interactions.
    Liu Z; Drabovich AP; Krylov SN; Pawliszyn J
    Anal Chem; 2007 Feb; 79(3):1097-100. PubMed ID: 17263341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoelectric focusing in serial immobilized pH gradient gels to improve protein separation in proteomic analysis.
    Poznanovic S; Schwall G; Zengerling H; Cahill MA
    Electrophoresis; 2005 Aug; 26(16):3185-90. PubMed ID: 16041705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.