BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15100886)

  • 1. Polyimide-based microfluidic devices.
    Metz S; Holzer R; Renaud P
    Lab Chip; 2001 Sep; 1(1):29-34. PubMed ID: 15100886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity.
    Metz S; Bertsch A; Bertrand D; Renaud P
    Biosens Bioelectron; 2004 May; 19(10):1309-18. PubMed ID: 15046764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.
    Metz S; Jiguet S; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):114-20. PubMed ID: 15052350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherently aligned microfluidic electrodes composed of liquid metal.
    So JH; Dickey MD
    Lab Chip; 2011 Mar; 11(5):905-11. PubMed ID: 21264405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Anal Chem; 2006 May; 78(10):3348-53. PubMed ID: 16689536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation.
    Choi JW; Rosset S; Niklaus M; Adleman JR; Shea H; Psaltis D
    Lab Chip; 2010 Mar; 10(6):783-8. PubMed ID: 20221568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solder-based chip-to-tube and chip-to-chip packaging for microfluidic devices.
    Murphy ER; Inoue T; Sahoo HR; Zaborenko N; Jensen KF
    Lab Chip; 2007 Oct; 7(10):1309-14. PubMed ID: 17896015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned cell culture inside microfluidic devices.
    Rhee SW; Taylor AM; Tu CH; Cribbs DH; Cotman CW; Jeon NL
    Lab Chip; 2005 Jan; 5(1):102-7. PubMed ID: 15616747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma etched polymer microelectrochemical systems.
    Rossier JS; Vollet C; Carnal A; Lagger G; Gobry V; Girault HH; Michel P; Reymond F
    Lab Chip; 2002 Aug; 2(3):145-50. PubMed ID: 15100825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic on chip viscometers.
    Chevalier J; Ayela F
    Rev Sci Instrum; 2008 Jul; 79(7):076102. PubMed ID: 18681739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.
    Brassard D; Malic L; Normandin F; Tabrizian M; Veres T
    Lab Chip; 2008 Aug; 8(8):1342-9. PubMed ID: 18651077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.