BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15100890)

  • 21. Rapid droplet mixers for digital microfluidic systems.
    Paik P; Pamula VK; Fair RB
    Lab Chip; 2003 Nov; 3(4):253-9. PubMed ID: 15007455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Print-and-peel fabricated passive micromixers.
    Thomas MS; Clift JM; Millare B; Vullev VI
    Langmuir; 2010 Feb; 26(4):2951-7. PubMed ID: 20000554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates.
    Rafeie M; Welleweerd M; Hassanzadeh-Barforoushi A; Asadnia M; Olthuis W; Ebrahimi Warkiani M
    Biomicrofluidics; 2017 Jan; 11(1):014108. PubMed ID: 28798843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.
    Lin JL; Lee KH; Lee GB
    Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic Measurements of Novel Chaotic Micromixers to Enhance Mixing Performances at Low Reynolds Numbers: Comparative Study.
    Naas TT; Hossain S; Aslam M; Rahman A; Hoque ASM; Kim KY; Islam SMR
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33800534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel design of in-line static mixer for permanganate/bisulfite process: Numerical simulations and pilot-scale testing.
    Lei H; Guan X; Sun Y; Yan H
    Water Environ Res; 2022 May; 94(5):e10725. PubMed ID: 35616441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward the Next Generation of Passive Micromixers: A Novel 3-D Design Approach.
    Okuducu MB; Aral MM
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length.
    Lim TW; Son Y; Jeong YJ; Yang DY; Kong HJ; Lee KS; Kim DP
    Lab Chip; 2011 Jan; 11(1):100-3. PubMed ID: 20938497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mixing Performance of a 3D Micro T-Mixer with Swirl-Inducing Inlets and Rectangular Constriction.
    Zhang J; Luo X
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental study on the numbering-up of microchannels for liquid mixing.
    Su Y; Chen G; Kenig EY
    Lab Chip; 2015 Jan; 15(1):179-87. PubMed ID: 25337910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections.
    Wang C; Pekkan K; de Zélicourt D; Horner M; Parihar A; Kulkarni A; Yoganathan AP
    Ann Biomed Eng; 2007 Nov; 35(11):1840-56. PubMed ID: 17641974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
    Sivashankar S; Agambayev S; Mashraei Y; Li EQ; Thoroddsen ST; Salama KN
    Biomicrofluidics; 2016 May; 10(3):034120. PubMed ID: 27453767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Variable Radius Spiral⁻Shaped Micromixer: From Numerical Analysis to Experimental Validation.
    Mehrdel P; Karimi S; Farré-Lladós J; Casals-Terré J
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding Interdependencies between Mechanical Velocity and Electrical Voltage in Electromagnetic Micromixers.
    Kim N; Chan WX; Ng SH; Yoon YJ; Allen JB
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A generic-tee-plenum mixing system for application to single point aerosol sampling in stacks and ducts.
    Han T; O'Neal DL; Ortiz CA
    Health Phys; 2007 Jan; 92(1):40-9. PubMed ID: 17164598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaotic mixing of granular materials in two-dimensional tumbling mixers.
    Khakhar DV; McCarthy JJ; Gilchrist JF; Ottino JM
    Chaos; 1999 Mar; 9(1):195-205. PubMed ID: 12779813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.