These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 15101032)
1. Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. Deheyn DD; Bencheikh-Latmani R; Latz MI Environ Toxicol; 2004 Jun; 19(3):161-78. PubMed ID: 15101032 [TBL] [Abstract][Full Text] [Related]
2. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774 [TBL] [Abstract][Full Text] [Related]
3. Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Fulladosa E; Murat JC; Martínez M; Villaescusa I Chemosphere; 2005 Jun; 60(1):43-8. PubMed ID: 15910900 [TBL] [Abstract][Full Text] [Related]
4. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. Bulich AA; Isenberg DL ISA Trans; 1981; 20(1):29-33. PubMed ID: 7251338 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability of metals along a contamination gradient in San Diego Bay (California, USA). Deheyn DD; Latz MI Chemosphere; 2006 May; 63(5):818-34. PubMed ID: 16169051 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Alvarenga P; Palma P; Gonçalves AP; Fernandes RM; Cunha-Queda AC; Duarte E; Vallini G Environ Int; 2007 May; 33(4):505-13. PubMed ID: 17188749 [TBL] [Abstract][Full Text] [Related]
7. Separation of pH, dilution, ionic strength and chemical matrix effects for biological monitoring of urines with the Microtox test using nicotine, cotinine and reference urines. Chou CC; Hee SS J Biolumin Chemilumin; 1993; 8(1):39-48. PubMed ID: 8475782 [TBL] [Abstract][Full Text] [Related]
8. Improved detection of toxic chemicals by Photobacterium phosphoreum using modified Boss medium. Hassan SH; Oh SE J Photochem Photobiol B; 2010 Oct; 101(1):16-21. PubMed ID: 20637650 [TBL] [Abstract][Full Text] [Related]
9. Phototoxicology. 2. Near-ultraviolet light enhancement of Microtox assays of trinitrotoluene and aminodinitrotoluenes. Johnson LR; Davenport R; Balbach H; Schaeffer DJ Ecotoxicol Environ Saf; 1994 Feb; 27(1):23-33. PubMed ID: 7525202 [TBL] [Abstract][Full Text] [Related]
10. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity. Yim JH; Kim KW; Kim SD J Hazard Mater; 2006 Nov; 138(1):16-21. PubMed ID: 16806685 [TBL] [Abstract][Full Text] [Related]
11. A bacterial toxicity assay performed with microplates, microluminometry and Microtox reagent. Blaise C; Forghani R; Legault R; Guzzo J; Dubow MS Biotechniques; 1994 May; 16(5):932-7. PubMed ID: 8068350 [TBL] [Abstract][Full Text] [Related]
12. Microtox solid phase test: Effect of diluent used in toxicity test. Volpi Ghirardini A; Girardini M; Marchetto D; Pantani C Ecotoxicol Environ Saf; 2009 Mar; 72(3):851-61. PubMed ID: 18471876 [TBL] [Abstract][Full Text] [Related]
13. Impact of dredging in a shallow coastal lagoon: Microtox Basic Solid-Phase Test, trace metals and Corophium bioassay. Guerra R; Pasteris A; Ponti M; Fabbri D; Bruzzi L Environ Int; 2007 May; 33(4):469-73. PubMed ID: 17161459 [TBL] [Abstract][Full Text] [Related]
14. Detection of heavy metal resistance bioluminescence bacteria using microplate bioassay method. Ranjitha P; Karthy ES J Environ Sci Eng; 2012 Jan; 54(1):43-9. PubMed ID: 23741856 [TBL] [Abstract][Full Text] [Related]
15. Application of leaching tests for toxicity evaluation of coal fly ash. Tsiridis V; Samaras P; Kungolos A; Sakellaropoulos GP Environ Toxicol; 2006 Aug; 21(4):409-16. PubMed ID: 16841327 [TBL] [Abstract][Full Text] [Related]
16. The acute toxicity of gluconic acid, beta-alaninediacetic acid, diethylenetriaminepentakismethylenephosphonic acid, and nitrilotriacetic acid determined by Daphnia magna, Raphidocelis subcapitata, and Photobacterium phosphoreum. Sillanpää M; Pirkanniemi K; Dhondup P Arch Environ Contam Toxicol; 2003 Apr; 44(3):332-5. PubMed ID: 12712292 [TBL] [Abstract][Full Text] [Related]
17. Predicting metal toxicity in sediments: a critique of current approaches. Simpson SL; Batley GE Integr Environ Assess Manag; 2007 Jan; 3(1):18-31. PubMed ID: 17283593 [TBL] [Abstract][Full Text] [Related]
18. Bioassay-directed fractionation of marine sediment solvent extracts from the east coast of Ireland. Giltrap M; Macken A; McHugh B; Hernan R; O' Rourke K; McGovern E; Foley B; Davoren M Chemosphere; 2009 Jul; 76(3):357-64. PubMed ID: 19386343 [TBL] [Abstract][Full Text] [Related]
19. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure--activity relationships of xenobiotics: comparison with the Microtox test. Bogaerts P; Bohatier J; Bonnemoy F Ecotoxicol Environ Saf; 2001 Jul; 49(3):293-301. PubMed ID: 11440483 [TBL] [Abstract][Full Text] [Related]
20. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. Vidic T; Lah B; Berden-Zrimec M; Marinsek-Logar R Environ Toxicol; 2009 Oct; 24(5):472-83. PubMed ID: 18973278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]