These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15101103)

  • 41. Time-Resolved Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic Features and Overexpression Targets to Increase Spiramycin Production in
    Fondi M; Pinatel E; Talà A; Damiano F; Consolandi C; Mattorre B; Fico D; Testini M; De Benedetto GE; Siculella L; De Bellis G; Alifano P; Peano C
    Front Microbiol; 2017; 8():835. PubMed ID: 28553270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of a genetically engineered strain producing propionylspiramycin.
    Li Y; Liu B; Li X; Yang Y; Wang S
    Chin J Biotechnol; 1992; 8(2):99-106. PubMed ID: 1297445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of Al
    Li Z; Hu F; Ye R; Lv H; Zeng J
    Prep Biochem Biotechnol; 2017 May; 47(5):481-488. PubMed ID: 28278108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effect of propyl alcohol on the biosynthesis of oxytetracycline].
    Listvinova SN; Griaznova NS
    Antibiotiki; 1969 Sep; 14(9):808-13. PubMed ID: 5361826
    [No Abstract]   [Full Text] [Related]  

  • 45. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil.
    Wang J; Liu H; Huang D; Jin L; Wang C; Wen J
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2447-2465. PubMed ID: 28175948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens.
    Geistlich M; Losick R; Turner JR; Rao RN
    Mol Microbiol; 1992 Jul; 6(14):2019-29. PubMed ID: 1508047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of tylosin in solid-state fermentation by Streptomyces fradiae NRRL-2702 and its gamma-irradiated mutant (gamma-1).
    Khaliq S; Rashid N; Akhtar K; Ghauri MA
    Lett Appl Microbiol; 2009 Nov; 49(5):635-40. PubMed ID: 19780953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement of tylosin fermentation by mutation and medium optimization.
    Lee SH; Rho YT
    Lett Appl Microbiol; 1999 Feb; 28(2):142-4. PubMed ID: 10206653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of surfactant on fermentation of kitasamycin in Streptomyces kitasatoensis.
    Zheng Q; Gao S
    Biotechnol Appl Biochem; 2016 Nov; 63(6):895-900. PubMed ID: 26339801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The regulatory genes involved in spiramycin and bitespiramycin biosynthesis.
    Dai J; Wang Y; Liu J; He W
    Microbiol Res; 2020 Nov; 240():126532. PubMed ID: 32622100
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus.
    Zhang J; Marcin C; Shifflet MA; Salmon P; Brix T; Greasham R; Buckland B; Chartrain M
    Appl Microbiol Biotechnol; 1996 Jan; 44(5):568-75. PubMed ID: 8703428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of three-carbon chain compounds as biosynthesis precursors to enhance tacrolimus production in Streptomyces tsukubaensis.
    Gajzlerska W; Kurkowiak J; Turło J
    N Biotechnol; 2015 Jan; 32(1):32-9. PubMed ID: 25152525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization.
    Zhu X; Zhang W; Chen X; Wu H; Duan Y; Xu Z
    Biotechnol Bioeng; 2010 Oct; 107(3):506-15. PubMed ID: 20517869
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling.
    Xu B; Jin Z; Wang H; Jin Q; Jin X; Cen P
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):261-7. PubMed ID: 18542945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimulatory Effects of Methyl-β-cyclodextrin on Spiramycin Production and Physical-Chemical Characterization of Nonhost@Guest Complexes.
    Calcagnile M; Bettini S; Damiano F; Talà A; Tredici SM; Pagano R; Di Salvo M; Siculella L; Fico D; De Benedetto GE; Valli L; Alifano P
    ACS Omega; 2018 Mar; 3(3):2470-2478. PubMed ID: 30221219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens.
    Galet J; Deveau A; Hôtel L; Frey-Klett P; Leblond P; Aigle B
    Appl Environ Microbiol; 2015 May; 81(9):3132-41. PubMed ID: 25724953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The microbial transformation of tylosin by the spiramycin-producing strain, Streptomyces ambofaciens KA-1028.
    Omura S; Kitao C; Sadakane N
    J Antibiot (Tokyo); 1980 Aug; 33(8):911-2. PubMed ID: 7429995
    [No Abstract]   [Full Text] [Related]  

  • 58. Engineering of leucine-responsive regulatory protein improves spiramycin and bitespiramycin biosynthesis.
    Lu Z; Zhang X; Dai J; Wang Y; He W
    Microb Cell Fact; 2019 Feb; 18(1):38. PubMed ID: 30782164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A preliminary study on the impact of exogenous A-Factor analogue 1,4-butyrolactone on stimulating bitespiramycin biosynthesis.
    Gao X; Wang Y; Chu J
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):1903-1913. PubMed ID: 31471709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XIII. Regulation of spiramycin I 3-hydroxyl acylase formation by glucose, butyrate, and cerulenin.
    Kitao C; Ikeda H; Hamada H; Omura S
    J Antibiot (Tokyo); 1979 Jun; 32(6):593-9. PubMed ID: 468735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.