These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 15101620)

  • 1. Frequency-domain wave equation and its time-domain solutions in attenuating media.
    Sushilov NV; Cobbold RS
    J Acoust Soc Am; 2004 Apr; 115(4):1431-6. PubMed ID: 15101620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media.
    Norton GV; Novarini JC
    J Acoust Soc Am; 2003 Jun; 113(6):3024-31. PubMed ID: 12822773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation.
    Liebler M; Ginter S; Dreyer T; Riedlinger RE
    J Acoust Soc Am; 2004 Nov; 116(5):2742-50. PubMed ID: 15603120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency.
    Chen W; Holm S
    J Acoust Soc Am; 2004 Apr; 115(4):1424-30. PubMed ID: 15101619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified Szabo's wave equation models for lossy media obeying frequency power law.
    Chen W; Holm S
    J Acoust Soc Am; 2003 Nov; 114(5):2570-4. PubMed ID: 14649993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical time-domain Green's functions for power-law media.
    Kelly JF; McGough RJ; Meerschaert MM
    J Acoust Soc Am; 2008 Nov; 124(5):2861-72. PubMed ID: 19045774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient propagation in media with classical or power-law loss.
    Cobbold RS; Sushilov NV; Weathermon AC
    J Acoust Soc Am; 2004 Dec; 116(6):3294-303. PubMed ID: 15658681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unifying fractional wave equation for compressional and shear waves.
    Holm S; Sinkus R
    J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking multiple relaxation, power-law attenuation, and fractional wave equations.
    Näsholm SP; Holm S
    J Acoust Soc Am; 2011 Nov; 130(5):3038-45. PubMed ID: 22087931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the transient solutions of three acoustic wave equations: van Wijngaarden's equation, Stokes' equation and the time-dependent diffusion equation.
    Buckingham MJ
    J Acoust Soc Am; 2008 Oct; 124(4):1909-20. PubMed ID: 19062830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation.
    Chen W; Fang J; Pang G; Holm S
    J Acoust Soc Am; 2017 Jan; 141(1):244. PubMed ID: 28147566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-domain analysis of power law attenuation in space-fractional wave equations.
    Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Jul; 144(1):467. PubMed ID: 30075676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective fractional acoustic wave equations in one-dimensional random multiscale media.
    Garnier J; Solna K
    J Acoust Soc Am; 2010 Jan; 127(1):62-72. PubMed ID: 20058951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On a time-domain representation of the Kramers-Kronig dispersion relations.
    Waters KR; Hughes MS; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2114-9. PubMed ID: 11108348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fracture compliance on wave propagation within a fluid-filled fracture.
    Nakagawa S; Korneev VA
    J Acoust Soc Am; 2014 Jun; 135(6):3186-97. PubMed ID: 24907784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media.
    Müller TM; Sahay PN
    J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
    Jiang H; Liu F; Meerschaert MM; McGough RJ
    Electron J Math Anal Appl; 2013 Jan; 1(1):55-66. PubMed ID: 26425384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative method for plotting dispersion curves.
    Honarvar F; Enjilela E; Sinclair AN
    Ultrasonics; 2009 Jan; 49(1):15-8. PubMed ID: 18727996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.