These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15101654)

  • 1. On the ability of a physiologically constrained area function model of the vocal tract to produce normal formant patterns under perturbed conditions.
    Story BH
    J Acoust Soc Am; 2004 Apr; 115(4):1760-70. PubMed ID: 15101654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vocal tract modes based on multiple area function sets from one speaker.
    Story BH
    J Acoust Soc Am; 2009 Apr; 125(4):EL141-7. PubMed ID: 19354352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of acoustic interspeaker variability based on the concept of formant-cavity affiliation.
    Apostol L; Perrier P; Bailly G
    J Acoust Soc Am; 2004 Jan; 115(1):337-51. PubMed ID: 14759026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002.
    Story BH
    J Acoust Soc Am; 2008 Jan; 123(1):327-35. PubMed ID: 18177162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal tract area functions and formant frequencies in opera tenors' modal and falsetto registers.
    Echternach M; Sundberg J; Baumann T; Markl M; Richter B
    J Acoust Soc Am; 2011 Jun; 129(6):3955-63. PubMed ID: 21682417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technique for "tuning" vocal tract area functions based on acoustic sensitivity functions.
    Story BH
    J Acoust Soc Am; 2006 Feb; 119(2):715-8. PubMed ID: 16521730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation of vocal tract shape, formant transitions, and stop consonant identification.
    Story BH; Bunton K
    J Speech Lang Hear Res; 2010 Dec; 53(6):1514-28. PubMed ID: 20643794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time dependence of vocal tract modes during production of vowels and vowel sequences.
    Story BH
    J Acoust Soc Am; 2007 Jun; 121(6):3770-89. PubMed ID: 17552726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception of synthetic vowel exemplars of 4-year-old children and estimation of their corresponding vocal tract shapes.
    McGowan RS
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2850-8. PubMed ID: 17139743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship of vocal tract shape to three voice qualities.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 2001 Apr; 109(4):1651-67. PubMed ID: 11325134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional vocal tract imaging and formant structure: varying vocal register, pitch, and loudness.
    Tom K; Titze IR; Hoffman EA; Story BH
    J Acoust Soc Am; 2001 Feb; 109(2):742-7. PubMed ID: 11248978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of vocal tract perturbation patterns based on statistical and acoustic considerations.
    Story BH
    J Acoust Soc Am; 2007 Oct; 122(4):EL107-14. PubMed ID: 17902738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual consequences of changes in epilaryngeal area and shape.
    Samlan RA; Kreiman J
    J Acoust Soc Am; 2014 Nov; 136(5):2798-806. PubMed ID: 25373979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: the role of vocalizer body size and voice-acoustic allometry.
    Rendall D; Kollias S; Ney C; Lloyd P
    J Acoust Soc Am; 2005 Feb; 117(2):944-55. PubMed ID: 15759713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parametric model of the vocal tract area function for vowel and consonant simulation.
    Story BH
    J Acoust Soc Am; 2005 May; 117(5):3231-54. PubMed ID: 15957790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustment of Vocal Tract Shape via Biofeedback: Influence on Vowels.
    Graf S; Schwiebacher J; Richter L; Buchberger M; Adachi S; Mastnak W; Hoyer P
    J Voice; 2020 May; 34(3):335-345. PubMed ID: 30448316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.
    Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B
    J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Masking effects on formant frequency structure variability under selected speaking conditions.
    McGuire RA; Rastatter MP
    J Aud Res; 1985 Apr; 25(2):73-80. PubMed ID: 3842139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.