BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15101987)

  • 1. Lipid-induced filamentous growth in Ustilago maydis.
    Klose J; de Sá MM; Kronstad JW
    Mol Microbiol; 2004 May; 52(3):823-35. PubMed ID: 15101987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize.
    Boyce KJ; Chang H; D'Souza CA; Kronstad JW
    Eukaryot Cell; 2005 Dec; 4(12):2044-56. PubMed ID: 16339722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of morphogenesis and pathogenic development of Ustilago maydis.
    Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE
    Adv Genet; 2007; 57():1-47. PubMed ID: 17352901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis.
    Martínez-Espinoza AD; Ruiz-Herrera J; León-Ramírez CG; Gold SE
    Curr Microbiol; 2004 Oct; 49(4):274-81. PubMed ID: 15386116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.
    García-Pedrajas MD; Baeza-Montañez L; Gold SE
    Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors.
    Krüger J; Loubradou G; Wanner G; Regenfelder E; Feldbrügge M; Kahmann R
    Mol Plant Microbe Interact; 2000 Oct; 13(10):1034-40. PubMed ID: 11043465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen Ustilago maydis.
    Dürrenberger F; Laidlaw RD; Kronstad JW
    Mol Microbiol; 2001 Jul; 41(2):337-48. PubMed ID: 11489122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis.
    García-Pedrajas MD; Nadal M; Bölker M; Gold SE; Perlin MH
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S22-30. PubMed ID: 18502157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis.
    Böhmer M; Colby T; Böhmer C; Bräutigam A; Schmidt J; Bölker M
    Proteomics; 2007 Mar; 7(5):675-85. PubMed ID: 17340586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis.
    Mahlert M; Leveleki L; Hlubek A; Sandrock B; Bölker M
    Mol Microbiol; 2006 Jan; 59(2):567-78. PubMed ID: 16390450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation is involved in the Ustilago maydis mating response.
    Fischer JA; McCann MP; Snetselaar KM
    Fungal Genet Biol; 2001 Oct; 34(1):21-35. PubMed ID: 11567549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis.
    Egan JD; García-Pedrajas MD; Andrews DL; Gold SE
    Mol Plant Microbe Interact; 2009 Oct; 22(10):1293-301. PubMed ID: 19737102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage.
    Zheng Y; Kief J; Auffarth K; Farfsing JW; Mahlert M; Nieto F; Basse CW
    Mol Microbiol; 2008 Jun; 68(6):1450-70. PubMed ID: 18410495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The signaling mechanisms involved in the dimorphic phenomenon of the Basidiomycota fungus Ustilago maydis.
    Ruiz-Herrera J; Pérez-Rodríguez F; Velez-Haro J
    Int Microbiol; 2020 Jan; 23(1):121-126. PubMed ID: 31915950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PAK family kinase Cla4 is required for budding and morphogenesis in Ustilago maydis.
    Leveleki L; Mahlert M; Sandrock B; Bölker M
    Mol Microbiol; 2004 Oct; 54(2):396-406. PubMed ID: 15469512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis.
    Carbó N; Pérez-Martín J
    Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubc2, an ortholog of the yeast Ste50p adaptor, possesses a basidiomycete-specific carboxy terminal extension essential for pathogenicity independent of pheromone response.
    Klosterman SJ; Martinez-Espinoza AD; Andrews DL; Seay JR; Gold SE
    Mol Plant Microbe Interact; 2008 Jan; 21(1):110-21. PubMed ID: 18052888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity.
    García-Muse T; Steinberg G; Perez-Martín J
    J Cell Sci; 2004 Jan; 117(Pt 3):487-506. PubMed ID: 14679309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity.
    Basse CW; Steinberg G
    Mol Plant Pathol; 2004 Mar; 5(2):83-92. PubMed ID: 20565585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis.
    Larraya LM; Boyce KJ; So A; Steen BR; Jones S; Marra M; Kronstad JW
    Eukaryot Cell; 2005 Dec; 4(12):2029-43. PubMed ID: 16339721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.