BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 15102052)

  • 1. Binding of Cu(II) or Zn(II) in a de novo designed triple-stranded alpha-helical coiled-coil toward a prototype for a metalloenzyme.
    Kiyokawa T; Kanaori K; Tajima K; Koike M; Mizuno T; Oku JI; Tanaka T
    J Pept Res; 2004 Apr; 63(4):347-53. PubMed ID: 15102052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-metal ion, Ni(II) and Cu(II), binding alpha-helical coiled coil peptide.
    Tanaka T; Mizuno T; Fukui S; Hiroaki H; Oku J; Kanaori K; Tajima K; Shirakawa M
    J Am Chem Soc; 2004 Nov; 126(43):14023-8. PubMed ID: 15506765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.
    Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T
    Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-ion-dependent GFP emission in vivo by combining a circularly permutated green fluorescent protein with an engineered metal-ion-binding coiled-coil.
    Mizuno T; Murao K; Tanabe Y; Oda M; Tanaka T
    J Am Chem Soc; 2007 Sep; 129(37):11378-83. PubMed ID: 17722917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the side chain length of Asp and Glu on coordination structure of Cu(2+) in a de novo designed protein.
    Shiga D; Nakane D; Inomata T; Masuda H; Oda M; Noda M; Uchiyama S; Fukui K; Takano Y; Nakamura H; Mizuno T; Tanaka T
    Biopolymers; 2009 Nov; 91(11):907-16. PubMed ID: 19598226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu(I) binding properties of a designed metalloprotein.
    Xie F; Sutherland DE; Stillman MJ; Ogawa MY
    J Inorg Biochem; 2010 Mar; 104(3):261-7. PubMed ID: 20060593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo design of a copper(II)-binding helix-turn-helix chimera: the prion octarepeat motif in a new context.
    Shields SB; Franklin SJ
    Biochemistry; 2004 Dec; 43(51):16086-91. PubMed ID: 15610003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaching the minimal metal ion binding peptide for structural and functional metalloenzyme mimicking.
    Jakab IN; Lorincz O; Jancsó A; Gajda T; Gyurcsik B
    Dalton Trans; 2008 Dec; (48):6987-95. PubMed ID: 19050785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of the hydrophobic core of an alpha-helical coiled coil.
    Kiyokawa T; Kanaori K; Tajima K; Tanaka T
    Biopolymers; 2000; 55(5):407-14. PubMed ID: 11241216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils.
    Dieckmann GR; McRorie DK; Lear JD; Sharp KA; DeGrado WF; Pecoraro VL
    J Mol Biol; 1998 Jul; 280(5):897-912. PubMed ID: 9671558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of rac-[Cu(diimine)3]2+ and rac-[Zn(diimine)3]2+ complexes with CT DNA: effect of fluxional Cu(II) geometry on DNA binding, ligand-promoted exciton coupling and prominent DNA cleavage.
    Ramakrishnan S; Palaniandavar M
    Dalton Trans; 2008 Aug; (29):3866-78. PubMed ID: 18629409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of a type 1 blue copper site within a de novo coiled-coil protein scaffold.
    Shiga D; Nakane D; Inomata T; Funahashi Y; Masuda H; Kikuchi A; Oda M; Noda M; Uchiyama S; Fukui K; Kanaori K; Tajima K; Takano Y; Nakamura H; Tanaka T
    J Am Chem Soc; 2010 Dec; 132(51):18191-8. PubMed ID: 21126081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation.
    Binolfi A; Lamberto GR; Duran R; Quintanar L; Bertoncini CW; Souza JM; Cerveñansky C; Zweckstetter M; Griesinger C; Fernández CO
    J Am Chem Soc; 2008 Sep; 130(35):11801-12. PubMed ID: 18693689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a small metal binding protein from Nitrosomonas europaea.
    Barney BM; LoBrutto R; Francisco WA
    Biochemistry; 2004 Sep; 43(35):11206-13. PubMed ID: 15366930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the hydrophobic interface and transition metal ions on the conformation of amyloidogenic model peptides.
    Hoernke M; Koksch B; Brezesinski G
    Biophys Chem; 2010 Aug; 150(1-3):64-72. PubMed ID: 20347516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.