BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15102090)

  • 1. Molecular size as the main determinant of solute maximum flux across the skin.
    Magnusson BM; Anissimov YG; Cross SE; Roberts MS
    J Invest Dermatol; 2004 Apr; 122(4):993-9. PubMed ID: 15102090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the effect of lipophilicity on the in vitro permeability and tissue reservoir characteristics of topically applied solutes in human skin layers.
    Cross SE; Magnusson BM; Winckle G; Anissimov Y; Roberts MS
    J Invest Dermatol; 2003 May; 120(5):759-64. PubMed ID: 12713577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local deep tissue penetration of compounds after dermal application: structure-tissue penetration relationships.
    Singh P; Roberts MS
    J Pharmacol Exp Ther; 1996 Nov; 279(2):908-17. PubMed ID: 8930199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of water solubility of solutes on their flux through human skin in vitro.
    Majumdar S; Thomas J; Wasdo S; Sloan KB
    Int J Pharm; 2007 Feb; 329(1-2):25-36. PubMed ID: 16982163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An updated database of human maximum skin fluxes and epidermal permeability coefficients for drugs, xenobiotics, and other solutes applied as aqueous solutions.
    Cheruvu HS; Liu X; Grice JE; Roberts MS
    Data Brief; 2022 Jun; 42():108242. PubMed ID: 35599823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin solubility determines maximum transepidermal flux for similar size molecules.
    Zhang Q; Grice JE; Li P; Jepps OG; Wang GJ; Roberts MS
    Pharm Res; 2009 Aug; 26(8):1974-85. PubMed ID: 19499313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of water solubility of solutes on their flux through human skin in vitro: an extended Flynn database fitted to the Roberts-Sloan equation.
    Thomas J; Majumdar S; Wasdo S; Majumdar A; Sloan KB
    Int J Pharm; 2007 Jul; 339(1-2):157-67. PubMed ID: 17412537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of in vitro human skin membranes to model and predict the effect of changing blood flow on the flux and retention of topically applied solutes.
    Cross SE; Roberts MS
    J Pharm Sci; 2008 Aug; 97(8):3442-50. PubMed ID: 18064682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume.
    Goodwin JT; Conradi RA; Ho NF; Burton PS
    J Med Chem; 2001 Oct; 44(22):3721-9. PubMed ID: 11606137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of transdermal flux of prodrugs of 5-fluorouracil, theophylline, and 6-mercaptopurine with a series/parallel model.
    Roberts WJ; Sloan KB
    J Pharm Sci; 2000 Nov; 89(11):1415-31. PubMed ID: 11015687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin.
    Zhang Q; Li P; Roberts MS
    J Control Release; 2011 Aug; 154(1):50-7. PubMed ID: 21549777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculating the dermal flux of chemicals with OELs based on their molecular structure: An attempt to assign the skin notation.
    Kupczewska-Dobecka M; Jakubowski M; Czerczak S
    Environ Toxicol Pharmacol; 2010 Sep; 30(2):95-102. PubMed ID: 21787637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of formulation effects on dermal absorption of topically applied ectoparasiticides dosed in vitro on canine and porcine skin using a mixture-adjusted quantitative structure permeability relationship.
    Riviere JE; Brooks JD; Collard WT; Deng J; de Rose G; Mahabir SP; Merritt DA; Marchiondo AA
    J Vet Pharmacol Ther; 2014 Oct; 37(5):435-44. PubMed ID: 24649911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the effect of experimental variables on the in vitro permeation of six model compounds across porcine skin.
    Karadzovska D; Brooks JD; Riviere JE
    Int J Pharm; 2013 Feb; 443(1-2):58-67. PubMed ID: 23313919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human skin permeation and partition: general linear free-energy relationship analyses.
    Abraham MH; Martins F
    J Pharm Sci; 2004 Jun; 93(6):1508-23. PubMed ID: 15124209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidermal iontophoresis: II. Application of the ionic mobility-pore model to the transport of local anesthetics.
    Lai PM; Roberts MS
    Pharm Res; 1998 Oct; 15(10):1579-88. PubMed ID: 9794501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted drug delivery to the skin and deeper tissues: role of physiology, solute structure and disease.
    Roberts MS
    Clin Exp Pharmacol Physiol; 1997 Nov; 24(11):874-9. PubMed ID: 9363373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of water solubility of solutes on their flux through human skin in vitro: a prodrug database integrated into the extended Flynn database.
    Juntunen J; Majumdar S; Sloan KB
    Int J Pharm; 2008 Mar; 351(1-2):92-103. PubMed ID: 18023303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the stratum corneum reservoir: desorption kinetics from keratin.
    Seif S; Hansen S
    J Pharm Sci; 2012 Oct; 101(10):3718-28. PubMed ID: 22733612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.