These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 1510240)

  • 21. Vasculogenesis and the induction of skeletogenic condensations in the avian eye.
    Jourdeuil K; Franz-Odendaal TA
    Anat Rec (Hoboken); 2012 Apr; 295(4):691-8. PubMed ID: 22344819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chondrogenesis of the branchial skeleton in embryonic sea lamprey, Petromyzon marinus.
    Morrison SL; Campbell CK; Wright GM
    Anat Rec; 2000 Nov; 260(3):252-67. PubMed ID: 11066036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-beta1 to induce mesenchymal cell condensation.
    Song JJ; Aswad R; Kanaan RA; Rico MC; Owen TA; Barbe MF; Safadi FF; Popoff SN
    J Cell Physiol; 2007 Feb; 210(2):398-410. PubMed ID: 17111364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered timing of the extracellular-matrix-mediated epithelial-mesenchymal interaction that initiates mandibular skeletogenesis in three inbred strains of mice: development, heterochrony, and evolutionary change in morphology.
    MacDonald ME; Hall BK
    J Exp Zool; 2001 Oct; 291(3):258-73. PubMed ID: 11598914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.
    Nah HD; Pacifici M; Gerstenfeld LC; Adams SL; Kirsch T
    J Bone Miner Res; 2000 Mar; 15(3):522-33. PubMed ID: 10750567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pannexin 3 is required for late stage bone growth but not for initiation of ossification in avian embryos.
    Bond SR; Abramyan J; Fu K; Naus CC; Richman JM
    Dev Dyn; 2016 Sep; 245(9):913-24. PubMed ID: 27295565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2.
    Stott NS; Jiang TX; Chuong CM
    J Cell Physiol; 1999 Sep; 180(3):314-24. PubMed ID: 10430171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All for one and one for all: condensations and the initiation of skeletal development.
    Hall BK; Miyake T
    Bioessays; 2000 Feb; 22(2):138-47. PubMed ID: 10655033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-CAM is not required for initiation of secondary chondrogenesis: the role of N-CAM in skeletal condensation and differentiation.
    Fang J; Hall BK
    Int J Dev Biol; 1999 Jul; 43(4):335-42. PubMed ID: 10470650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the paired-box genes Pax-1 and Pax-9 in limb skeleton development.
    LeClair EE; Bonfiglio L; Tuan RS
    Dev Dyn; 1999 Feb; 214(2):101-15. PubMed ID: 10030590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The origin of the ectomesenchymal condensations which precede the development of the bony scleral ossicles in the eyes of embryonic chicks.
    Fyfe DM; Hall BK
    J Embryol Exp Morphol; 1983 Feb; 73():69-86. PubMed ID: 6875466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of Frzb-1 in mesenchymal condensation and cartilage differentiation in the chick limb bud.
    Wada N; Kawakami Y; Ladher R; Francis-West PH; Nohno T
    Int J Dev Biol; 1999 Sep; 43(6):495-500. PubMed ID: 10610022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterning of cartilaginous condensations in the developing facial skeleton.
    Paudel S; Gjorcheska S; Bump P; Barske L
    Dev Biol; 2022 Jun; 486():44-55. PubMed ID: 35358504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages.
    Martin JF; Bradley A; Olson EN
    Genes Dev; 1995 May; 9(10):1237-49. PubMed ID: 7758948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for development and evolution of complex morphological structures.
    Atchley WR; Hall BK
    Biol Rev Camb Philos Soc; 1991 May; 66(2):101-57. PubMed ID: 1863686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation.
    Downie SA; Newman SA
    Dev Biol; 1994 Mar; 162(1):195-208. PubMed ID: 8125187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical localisation of tenascin during the development of scleral papillae and scleral ossicles in the embryonic chick.
    Fyfe DM; Ferguson MW; Chiquet-Ehrismann R
    J Anat; 1988 Aug; 159():117-27. PubMed ID: 2470716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM.
    Jiang TX; Yi JR; Ying SY; Chuong CM
    Dev Biol; 1993 Feb; 155(2):545-57. PubMed ID: 7679361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives.
    Franz-Odendaal TA; Vickaryous MK
    Dev Dyn; 2006 May; 235(5):1244-55. PubMed ID: 16496288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.