These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15102606)

  • 61. Vehicles for genetic vaccines against human immunodeficiency virus: induction of T cell-mediated immune responses.
    Hanke T
    Curr Mol Med; 2001 Mar; 1(1):123-35. PubMed ID: 11899238
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of dendritic cells in HIV-immunotherapy.
    Van Gulck E; Van Tendeloo VF; Berneman ZN; Vanham G
    Curr HIV Res; 2010 Jun; 8(4):310-22. PubMed ID: 20353393
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pathogenicity and immunogenicity of recombinant Tiantan Vaccinia Virus with deleted C12L and A53R genes.
    Dai K; Liu Y; Liu M; Xu J; Huang W; Huang X; Liu L; Wan Y; Hao Y; Shao Y
    Vaccine; 2008 Sep; 26(39):5062-71. PubMed ID: 18573290
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways.
    Gómez CE; Perdiguero B; Sánchez-Corzo C; Sorzano COS; Esteban M
    Viruses; 2017 Dec; 10(1):. PubMed ID: 29280955
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus--poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans.
    Kanesa-thasan N; Smucny JJ; Hoke CH; Marks DH; Konishi E; Kurane I; Tang DB; Vaughn DW; Mason PW; Shope RE
    Vaccine; 2000 Oct; 19(4-5):483-91. PubMed ID: 11027812
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advances in prostate cancer immunotherapies.
    Basler M; Groettrup M
    Drugs Aging; 2007; 24(3):197-221. PubMed ID: 17362049
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Immune interventions in HIV infection.
    Carcelain G; Autran B
    Immunol Rev; 2013 Jul; 254(1):355-71. PubMed ID: 23772631
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A chemically defined production process for highly attenuated poxviruses.
    Jordan I; Northoff S; Thiele M; Hartmann S; Horn D; Höwing K; Bernhardt H; Oehmke S; von Horsten H; Rebeski D; Hinrichsen L; Zelnik V; Mueller W; Sandig V
    Biologicals; 2011 Jan; 39(1):50-8. PubMed ID: 21237672
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mucosal vaccine vectors: replication-competent versus replication-deficient poxviruses.
    Karkhanis LU; Ross TM
    Curr Pharm Des; 2007; 13(19):2015-23. PubMed ID: 17627535
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses.
    Hodge JW; McLaughlin JP; Kantor JA; Schlom J
    Vaccine; 1997; 15(6-7):759-68. PubMed ID: 9178479
    [TBL] [Abstract][Full Text] [Related]  

  • 71. HIV-1 immunogen (remune).
    Newsline People AIDS Coalit N Y; 1998 Dec; ():36. PubMed ID: 11367099
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A selectable and excisable marker system for the rapid creation of recombinant poxviruses.
    Rintoul JL; Wang J; Gammon DB; van Buuren NJ; Garson K; Jardine K; Barry M; Evans DH; Bell JC
    PLoS One; 2011; 6(9):e24643. PubMed ID: 21931792
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tools for the targeted genetic modification of poxvirus genomes.
    Matía A; Lorenzo MM; Blasco R
    Curr Opin Virol; 2020 Oct; 44():183-190. PubMed ID: 33242829
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX.
    Whelan JT; Singaravelu R; Wang F; Pelin A; Tamming LA; Pugliese G; Martin NT; Crupi MJF; Petryk J; Austin B; He X; Marius R; Duong J; Jones C; Fekete EEF; Alluqmani N; Chen A; Boulton S; Huh MS; Tang MY; Taha Z; Scut E; Diallo JS; Azad T; Lichty BD; Ilkow CS; Bell JC
    Front Immunol; 2022; 13():1050250. PubMed ID: 36713447
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Carbohydrate-based experimental therapeutics for cancer, HIV/AIDS and other diseases.
    Oppenheimer SB; Alvarez M; Nnoli J
    Acta Histochem; 2008; 110(1):6-13. PubMed ID: 17963823
    [TBL] [Abstract][Full Text] [Related]  

  • 76. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections.
    Struzik J; Szulc-Dąbrowska L
    Pathogens; 2020 Nov; 9(12):. PubMed ID: 33260450
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Infectious recombinant vectored virus vaccines.
    Esposito JJ; Murphy FA
    Adv Vet Sci Comp Med; 1989; 33():195-247. PubMed ID: 2648774
    [No Abstract]   [Full Text] [Related]  

  • 78. Messenger RNA-based vaccines.
    Pascolo S
    Expert Opin Biol Ther; 2004 Aug; 4(8):1285-94. PubMed ID: 15268662
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cancer Vaccines 2007. Cancer and HIV Vaccines: Shared Lessons. October 4-6, 2007, New York, USA. Abstracts.
    Cancer Immun; 2008; 8 Suppl 1(Suppl 1):1-20. PubMed ID: 18363205
    [No Abstract]   [Full Text] [Related]  

  • 80. Double boost for mRNA cancer vaccines.
    Villanueva MT
    Nat Rev Drug Discov; 2019 Nov; 18(12):902. PubMed ID: 31780853
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.