These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 15102809)
1. LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes. Joyce EA; Kawale A; Censini S; Kim CC; Covacci A; Falkow S Infect Immun; 2004 May; 72(5):2964-75. PubMed ID: 15102809 [TBL] [Abstract][Full Text] [Related]
2. The LuxS/AI-2 Quorum-Sensing System of Yadav MK; Vidal JE; Go YY; Kim SH; Chae SW; Song JJ Front Cell Infect Microbiol; 2018; 8():138. PubMed ID: 29780750 [No Abstract] [Full Text] [Related]
3. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Stroeher UH; Paton AW; Ogunniyi AD; Paton JC Infect Immun; 2003 Jun; 71(6):3206-12. PubMed ID: 12761100 [TBL] [Abstract][Full Text] [Related]
4. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Vidal JE; Ludewick HP; Kunkel RM; Zähner D; Klugman KP Infect Immun; 2011 Oct; 79(10):4050-60. PubMed ID: 21825061 [TBL] [Abstract][Full Text] [Related]
5. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Holmes AR; McNab R; Millsap KW; Rohde M; Hammerschmidt S; Mawdsley JL; Jenkinson HF Mol Microbiol; 2001 Sep; 41(6):1395-408. PubMed ID: 11580843 [TBL] [Abstract][Full Text] [Related]
6. Mucosal Infections and Invasive Potential of Nonencapsulated Bradshaw JL; Pipkins HR; Keller LE; Pendarvis JK; McDaniel LS mBio; 2018 Jan; 9(1):. PubMed ID: 29339428 [TBL] [Abstract][Full Text] [Related]
7. Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Iannelli F; Chiavolini D; Ricci S; Oggioni MR; Pozzi G Infect Immun; 2004 May; 72(5):3077-80. PubMed ID: 15102826 [TBL] [Abstract][Full Text] [Related]
8. Competitive Dominance within Biofilm Consortia Regulates the Relative Distribution of Pneumococcal Nasopharyngeal Density. Wu X; Jacobs NT; Bozio C; Palm P; Lattar SM; Hanke CR; Watson DM; Sakai F; Levin BR; Klugman KP; Vidal JE Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28576759 [No Abstract] [Full Text] [Related]
9. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Ogunniyi AD; LeMessurier KS; Graham RM; Watt JM; Briles DE; Stroeher UH; Paton JC Infect Immun; 2007 Apr; 75(4):1843-51. PubMed ID: 17261599 [TBL] [Abstract][Full Text] [Related]
10. Development of a non-invasive murine infection model for acute otitis media. Stol K; van Selm S; van den Berg S; Bootsma HJ; Blokx WAM; Graamans K; Tonnaer ELGM; Hermans PWM Microbiology (Reading); 2009 Dec; 155(Pt 12):4135-4144. PubMed ID: 19762437 [TBL] [Abstract][Full Text] [Related]
11. LuxS impacts on LytA-dependent autolysis and on competence in Streptococcus pneumoniae. Romao S; Memmi G; Oggioni MR; Trombe MC Microbiology (Reading); 2006 Feb; 152(Pt 2):333-341. PubMed ID: 16436421 [TBL] [Abstract][Full Text] [Related]
12. Uncovering the link between the Agnew HN; Atack JM; Fernando ARD; Waters SN; van der Linden M; Smith E; Abell AD; Brazel EB; Paton JC; Trappetti C Front Cell Infect Microbiol; 2023; 13():1177857. PubMed ID: 37197203 [No Abstract] [Full Text] [Related]
13. The immunising effect of pneumococcal nasopharyngeal colonisation; protection against future colonisation and fatal invasive disease. Richards L; Ferreira DM; Miyaji EN; Andrew PW; Kadioglu A Immunobiology; 2010 Apr; 215(4):251-63. PubMed ID: 20071053 [TBL] [Abstract][Full Text] [Related]
14. A two-component system that controls the expression of pneumococcal surface antigen A (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. McCluskey J; Hinds J; Husain S; Witney A; Mitchell TJ Mol Microbiol; 2004 Mar; 51(6):1661-75. PubMed ID: 15009893 [TBL] [Abstract][Full Text] [Related]
15. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Marouni MJ; Sela S Infect Immun; 2003 Oct; 71(10):5633-9. PubMed ID: 14500483 [TBL] [Abstract][Full Text] [Related]
16. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Hava DL; Camilli A Mol Microbiol; 2002 Sep; 45(5):1389-406. PubMed ID: 12207705 [TBL] [Abstract][Full Text] [Related]
17. Increased Virulence of an Encapsulated Streptococcus pneumoniae Upon Expression of Pneumococcal Surface Protein K. Pipkins HR; Bradshaw JL; Keller LE; McDaniel LS J Infect Dis; 2018 Apr; 217(10):1637-1644. PubMed ID: 29394357 [TBL] [Abstract][Full Text] [Related]
18. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin. León-Sicairos N; Angulo-Zamudio UA; Vidal JE; López-Torres CA; Bolscher JG; Nazmi K; Reyes-Cortes R; Reyes-López M; de la Garza M; Canizalez-Román A Biometals; 2014 Oct; 27(5):969-80. PubMed ID: 25053107 [TBL] [Abstract][Full Text] [Related]
19. Site of isolation determines biofilm formation and virulence phenotypes of Streptococcus pneumoniae serotype 3 clinical isolates. Trappetti C; van der Maten E; Amin Z; Potter AJ; Chen AY; van Mourik PM; Lawrence AJ; Paton AW; Paton JC Infect Immun; 2013 Feb; 81(2):505-13. PubMed ID: 23208608 [TBL] [Abstract][Full Text] [Related]
20. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. Iyer R; Baliga NS; Camilli A J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]