These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15102901)

  • 1. Location and magnitude of conductance changes produced by Renshaw recurrent inhibition in spinal motoneurons.
    Maltenfort MG; McCurdy ML; Phillips CA; Turkin VV; Hamm TM
    J Neurophysiol; 2004 Sep; 92(3):1417-32. PubMed ID: 15102901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the location and magnitude of synaptic conductance changes in spinal motoneurons by impedance measurements.
    Maltenfort MG; Phillips CA; McCurdy ML; Hamm TM
    J Neurophysiol; 2004 Sep; 92(3):1400-16. PubMed ID: 15102900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the morphological and electrotonic properties of Renshaw cells, Ia inhibitory interneurons, and motoneurons in the cat.
    Bui TV; Cushing S; Dewey D; Fyffe RE; Rose PK
    J Neurophysiol; 2003 Nov; 90(5):2900-18. PubMed ID: 12878716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the electrical parameters of spinal motoneurons using impedance measurements.
    Maltenfort MG; Hamm TM
    J Neurophysiol; 2004 Sep; 92(3):1433-44. PubMed ID: 15102902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord.
    Moore NJ; Bhumbra GS; Foster JD; Beato M
    J Neurosci; 2015 Oct; 35(40):13673-86. PubMed ID: 26446220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo.
    Lee RH; Kuo JJ; Jiang MC; Heckman CJ
    J Neurophysiol; 2003 Jan; 89(1):27-39. PubMed ID: 12522157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study.
    Maltenfort MG; Heckman CJ; Rymer WZ
    J Neurophysiol; 1998 Jul; 80(1):309-23. PubMed ID: 9658052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical computer model analysis of the reciprocal and recurrent inhibitory postsynaptic potentials in alpha-motoneurons.
    Gradwohl G; Grossman Y
    Neural Comput; 2010 Jul; 22(7):1764-85. PubMed ID: 20235819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nonlinear summation of synaptic currents on the input-output properties of spinal motoneurons.
    Cushing S; Bui T; Rose PK
    J Neurophysiol; 2005 Nov; 94(5):3465-78. PubMed ID: 16079193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent inhibition of human firing motoneurons (experimental and modeling study).
    Piotrkiewicz M; Kudina L; Mierzejewska J
    Biol Cybern; 2004 Oct; 91(4):243-57. PubMed ID: 15378374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of effective synaptic currents underlying recurrent inhibition in cat triceps surae motoneurons.
    Lindsay AD; Binder MD
    J Neurophysiol; 1991 Feb; 65(2):168-77. PubMed ID: 2016635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study.
    Grande G; Bui TV; Rose PK
    J Neurophysiol; 2007 Jun; 97(6):4023-35. PubMed ID: 17428909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active dendritic integration of inhibitory synaptic inputs in vivo.
    Kuo JJ; Lee RH; Johnson MD; Heckman HM; Heckman CJ
    J Neurophysiol; 2003 Dec; 90(6):3617-24. PubMed ID: 12944534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the inhibition of Renshaw cells during subthreshold and suprathreshold conditions using anatomically and physiologically realistic models.
    Bui TV; Dewey DE; Fyffe RE; Rose PK
    J Neurophysiol; 2005 Sep; 94(3):1688-98. PubMed ID: 15917321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs.
    Elbasiouny SM; Bennett DJ; Mushahwar VK
    J Physiol; 2006 Jan; 570(Pt 2):355-74. PubMed ID: 16308349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative location of inhibitory synapses and persistent inward currents determines the magnitude and mode of synaptic amplification in motoneurons.
    Bui TV; Grande G; Rose PK
    J Neurophysiol; 2008 Feb; 99(2):583-94. PubMed ID: 18046006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution.
    Elbasiouny SM; Bennett DJ; Mushahwar VK
    J Neurophysiol; 2005 Dec; 94(6):3961-74. PubMed ID: 16120667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How membrane properties shape the discharge of motoneurons: a detailed analytical study.
    Meunier C; Borejsza K
    Neural Comput; 2005 Nov; 17(11):2383-420. PubMed ID: 16156933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat.
    Fyffe RE
    J Neurophysiol; 1991 May; 65(5):1134-49. PubMed ID: 1869909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.