These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15103099)

  • 1. Is collision-induced dissociation of low-energy carbonyl sulfide cations adversely affected by asymmetry?
    Shukla AK
    Eur J Mass Spectrom (Chichester); 2004; 10(2):221-4. PubMed ID: 15103099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociative scattering of hyperthermal energy CF3+ ions from modified surfaces.
    Rezayat T; Shukla A
    J Chem Phys; 2007 Feb; 126(8):084701. PubMed ID: 17343463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal energy distributions deposited in doubly and singly charged tungsten hexacarbonyl ions generated by charge stripping, electron impact, and charge exchange.
    Cooks RG; Ast T; Kralj B; Kramer V; Z Igon D
    J Am Soc Mass Spectrom; 1990 Feb; 1(1):16-27. PubMed ID: 24248608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threshold collision-induced dissociation of diatomic molecules: a case study of the energetics and dynamics of O2- collisions with Ar and Xe.
    Ahu Akin F; Ree J; Ervin KM; Kyu Shin H
    J Chem Phys; 2005 Aug; 123(6):64308. PubMed ID: 16122309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collisional activation of peptide ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2003; 22(3):158-81. PubMed ID: 12838543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkali chloride cluster ion dissociation examined by the kinetic method: heterolytic bond dissociation energies, effective temperatures, and entropic effects.
    Wu L; Denault JW; Cooks RG; Drahos L; Vékey K
    J Am Soc Mass Spectrom; 2002 Dec; 13(12):1388-95. PubMed ID: 12484458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas phase fragmentation of protonated betaine and its clusters.
    Wyer JA; Feketeová L; Brøndsted Nielsen S; O'Hair RA
    Phys Chem Chem Phys; 2009 Oct; 11(39):8752-8. PubMed ID: 20449019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences between the internal energy depositions induced by collisional activation and by electron transfer of W(CO)6(2+) ions on collision with Ar and K targets.
    Hayakawa S; Kitaguchi A; Kameoka S; Toyoda M; Ichihara T
    J Chem Phys; 2006 Jun; 124(22):224320. PubMed ID: 16784287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of kinetic energy losses in high-energy collision-induced dissociation with observed peptide product ions.
    Vachet RW; Winders AD; Glish GL
    Anal Chem; 1996 Feb; 68(3):522-6. PubMed ID: 8712360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiclassical trajectory study of the collision-induced dissociation of CH3SH+ + Ar.
    Martínez-Núñez E; Vázquez SA; Marques JM
    J Chem Phys; 2004 Aug; 121(6):2571-7. PubMed ID: 15281855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem mass spectrometry: dissociation of ions by collisional activation.
    Shukla AK; Futrell JH
    J Mass Spectrom; 2000 Sep; 35(9):1069-90. PubMed ID: 11006601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the hydrogen loss from protonated nucleobases after electronic excitation or collisional electron capture.
    Wyer JA; Cederquist H; Haag N; Huber BA; Hvelplund P; Johansson HA; Maisonny R; Brøndsted Nielsen S; Rangama J; Rousseau P; Schmidt HT
    Eur J Mass Spectrom (Chichester); 2009; 15(6):681-8. PubMed ID: 19940334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase fragmentation of metal adducts of alkali-metal oxalate salts.
    Hale RD; Chan CC; Weisbecker CS; Attygalle AB
    J Mass Spectrom; 2014 Mar; 49(3):195-200. PubMed ID: 24619545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of collision- versus electron-induced dissociation of sodium chloride cluster cations.
    Feketeová L; O'Hair RA
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):60-4. PubMed ID: 19051229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision-induced dissociation of transition metal-oxide ions: dynamics of VO+ collision with Xe.
    Ree J; Kim YH; Shin HK
    J Chem Phys; 2006 Feb; 124(7):74307. PubMed ID: 16497036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion activation methods for tandem mass spectrometry.
    Sleno L; Volmer DA
    J Mass Spectrom; 2004 Oct; 39(10):1091-112. PubMed ID: 15481084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of collision-induced dissociation and electron-induced dissociation of singly protonated aromatic amino acids, cystine and related simple peptides using a hybrid linear ion trap-FT-ICR mass spectrometer.
    Lioe H; O'Hair RA
    Anal Bioanal Chem; 2007 Nov; 389(5):1429-37. PubMed ID: 17874085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of large ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2005; 24(2):135-67. PubMed ID: 15389858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragmentation dynamics of carbonyl sulfide in collision with 500 eV electron.
    Shen Z; Wang E; Gong M; Shan X; Chen X
    J Chem Phys; 2016 Dec; 145(23):234303. PubMed ID: 28010080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules.
    Cuyckens F; Claeys M
    J Mass Spectrom; 2005 Mar; 40(3):364-72. PubMed ID: 15674860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.