These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15103162)

  • 1. A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules.
    Pichon-Pesme V; Jelsch C; Guillot B; Lecomte C
    Acta Crystallogr A; 2004 May; 60(Pt 3):204-8. PubMed ID: 15103162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction and validation of an invariom database for amino-acid, peptide and protein molecules.
    Dittrich B; Hübschle CB; Luger P; Spackman MA
    Acta Crystallogr D Biol Crystallogr; 2006 Nov; 62(Pt 11):1325-35. PubMed ID: 17057335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-density study on cyclosporine A.
    Johnas SK; Dittrich B; Meents A; Messerschmidt M; Weckert EF
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):284-93. PubMed ID: 19237751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials.
    Li X; Volkov AV; Szalewicz K; Coppens P
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):639-47. PubMed ID: 16699191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the scattering-factor formalism in protein refinement: application of the University at Buffalo Aspherical-Atom Databank to polypeptide structures.
    Volkov A; Messerschmidt M; Coppens P
    Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):160-70. PubMed ID: 17242509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental charge-density study of paracetamol--multipole refinement in the presence of a disordered methyl group.
    Bak JM; Dominiak PM; Wilson CC; Woźniak K
    Acta Crystallogr A; 2009 Nov; 65(Pt 6):490-500. PubMed ID: 19844032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures.
    Zarychta B; Pichon-Pesme V; Guillot B; Lecomte C; Jelsch C
    Acta Crystallogr A; 2007 Mar; 63(Pt 2):108-25. PubMed ID: 17301471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate charge density of the tripeptide Ala-Pro-Ala with the maximum entropy method (MEM): influence of data resolution.
    Hofmann A; Kalinowski R; Luger P; van Smaalen S
    Acta Crystallogr B; 2007 Aug; 63(Pt 4):633-43. PubMed ID: 17641434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism.
    Koritsanszky T; Volkov A; Coppens P
    Acta Crystallogr A; 2002 Sep; 58(Pt 5):464-72. PubMed ID: 12192120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental charge density studies of disordered N-phenylpyrrole and N-(4-fluorophenyl)pyrrole.
    Meindl K; Henn J; Kocher N; Leusser D; Zachariasse KA; Sheldrick GM; Koritsanszky T; Stalke D
    J Phys Chem A; 2009 Sep; 113(35):9684-91. PubMed ID: 19673504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of charge effects on density maps obtained by high-resolution electron crystallography.
    Hirai T; Mitsuoka K; Kidera A; Fujiyoshi Y
    J Electron Microsc (Tokyo); 2007 Aug; 56(4):131-40. PubMed ID: 17947795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case.
    Guillot B; Jelsch C; Podjarny A; Lecomte C
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):567-88. PubMed ID: 18453693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution.
    Mitsuoka K; Hirai T; Murata K; Miyazawa A; Kidera A; Kimura Y; Fujiyoshi Y
    J Mol Biol; 1999 Feb; 286(3):861-82. PubMed ID: 10024456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases.
    Bąk JM; Domagała S; Hübschle C; Jelsch C; Dittrich B; Dominiak PM
    Acta Crystallogr A; 2011 Mar; 67(Pt 2):141-53. PubMed ID: 21325717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-space protein-model completion: an inverse-kinematics approach.
    van den Bedem H; Lotan I; Latombe JC; Deacon AM
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):2-13. PubMed ID: 15608370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides.
    Sokalski WA; Keller DA; Ornstein RL; Rein R
    J Comput Chem; 1993; 14(8):970-6. PubMed ID: 11539835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LAFIRE: software for automating the refinement process of protein-structure analysis.
    Yao M; Zhou Y; Tanaka I
    Acta Crystallogr D Biol Crystallogr; 2006 Feb; 62(Pt 2):189-96. PubMed ID: 16421450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical charge density distribution in two ternary cobalt(III) complexes of aromatic amino acids.
    Overgaard J; Waller MP; Piltz R; Platts JA; Emseis P; Leverett P; Williams PA; Hibbs DE
    J Phys Chem A; 2007 Oct; 111(40):10123-33. PubMed ID: 17877334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic properties of a cytosine decavanadate: toward a better understanding of chemical and biological properties of decavanadates.
    Bosnjaković-Pavlović N; Spasojević-de Biré A; Tomaz I; Bouhmaida N; Avecilla F; Mioc UB; Pessoa JC; Ghermani NE
    Inorg Chem; 2009 Oct; 48(20):9742-53. PubMed ID: 19764781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.