BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15103404)

  • 21. Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast.
    Camier S; Ma E; Leroy C; Pruvost A; Toledano M; Marsolier-Kergoat MC
    Free Radic Biol Med; 2007 Apr; 42(7):1008-16. PubMed ID: 17349928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The manufacture and molecular characterization of phosphorothioate deoxynucleotides for use as antisense therapeutics in human clinical trials.
    Bergot BJ; Foy M; Hansen C; Fearon K; Frediani J; Hirschbein B
    Nucleic Acids Symp Ser; 1993; (29):57. PubMed ID: 8247794
    [No Abstract]   [Full Text] [Related]  

  • 23. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase.
    Larsson KM; Jordan A; Eliasson R; Reichard P; Logan DT; Nordlund P
    Nat Struct Mol Biol; 2004 Nov; 11(11):1142-9. PubMed ID: 15475969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The chemical toxicology of 2-deoxyribose oxidation in DNA.
    Dedon PC
    Chem Res Toxicol; 2008 Jan; 21(1):206-19. PubMed ID: 18052112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides.
    Hori M; Ishiguro C; Suzuki T; Nakagawa N; Nunoshiba T; Kuramitsu S; Yamamoto K; Kasai H; Harashima H; Kamiya H
    DNA Repair (Amst); 2007 Dec; 6(12):1786-93. PubMed ID: 17709303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of the tyrosyl radical in mouse ribonucleotide reductase by (-)-epicatechin.
    Schroeder P; Voevodskaya N; Klotz LO; Brenneisen P; Gräslund A; Sies H
    Biochem Biophys Res Commun; 2005 Jan; 326(3):614-7. PubMed ID: 15596143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seven clues to the origin and structure of class-I ribonucleotide reductase intermediate X.
    Han WG; Liu T; Lovell T; Noodleman L
    J Inorg Biochem; 2006 Apr; 100(4):771-9. PubMed ID: 16504298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of 2-deoxyribose by benzotriazinyl radicals of antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides.
    Shinde SS; Anderson RF; Hay MP; Gamage SA; Denny WA
    J Am Chem Soc; 2004 Jun; 126(25):7865-74. PubMed ID: 15212534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage.
    Herrick J; Sclavi B
    Mol Microbiol; 2007 Jan; 63(1):22-34. PubMed ID: 17229208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deoxygenative [1,2]-hydride shift rearrangements in nucleoside and sugar chemistry: analogy with the [1,2]-electron shift in the deoxygenation of ribonucleotides by ribonucleotide reductases.
    Robins MJ; Nowak I; Wnuk SF; Hansske F; Madej D
    J Org Chem; 2007 Oct; 72(22):8216-21. PubMed ID: 17918996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A general synthesis of specifically deuterated nucleotides for studies of DNA and RNA.
    Chen B; Jamieson ER; Tullius TD
    Bioorg Med Chem Lett; 2002 Nov; 12(21):3093-6. PubMed ID: 12372509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
    Zhang X; Lee I; Berdis AJ
    Org Biomol Chem; 2004 Jun; 2(12):1703-11. PubMed ID: 15188037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Scientific horizon and industrial stake in the biosynthesis of nucleic acids].
    Marlière P
    Med Sci (Paris); 2009 May; 25 Spec No 2():27-31. PubMed ID: 19848190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formamide as the main building block in the origin of nucleic acids.
    Costanzo G; Saladino R; Crestini C; Ciciriello F; Di Mauro E
    BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S1. PubMed ID: 17767725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circular dichroism and magnetic circular dichroism studies of the biferrous site of the class Ib ribonucleotide reductase from Bacillus cereus: comparison to the class Ia enzymes.
    Tomter AB; Bell CB; Røhr AK; Andersson KK; Solomon EI
    Biochemistry; 2008 Oct; 47(43):11300-9. PubMed ID: 18831534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribonucleotide reductases in the twenty-first century.
    Stubbe J
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2723-4. PubMed ID: 9501154
    [No Abstract]   [Full Text] [Related]  

  • 37. Re-engineering DNA: design, synthesis, and properties of modified nucleic acids.
    Bergstrom DE; Wang G; Toma JD; Gerry N; Nichols R; Andrews P
    Nucleic Acids Symp Ser; 1993; (29):11-2. PubMed ID: 8247727
    [No Abstract]   [Full Text] [Related]  

  • 38. Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2'-azido-2'-deoxyuridine-5'-diphosphate: trapping of the 3'-ketonucleotide.
    Fritscher J; Artin E; Wnuk S; Bar G; Robblee JH; Kacprzak S; Kaupp M; Griffin RG; Bennati M; Stubbe J
    J Am Chem Soc; 2005 Jun; 127(21):7729-38. PubMed ID: 15913363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of dNTP metabolites in control of the embryonic cell cycle.
    Liu B; Großhans J
    Cell Cycle; 2019 Nov; 18(21):2817-2827. PubMed ID: 31544596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prebiotic chemistry and the origin of the RNA world.
    Orgel LE
    Crit Rev Biochem Mol Biol; 2004; 39(2):99-123. PubMed ID: 15217990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.