BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15103659)

  • 1. A novel class of chemically modified iodo-containing resins: design, synthesis and application to mass spectrometry-based proteome analysis.
    Zhang L; Guo YL; Liu HQ
    J Mass Spectrom; 2004 Apr; 39(4):447-57. PubMed ID: 15103659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-labile isotope-coded extractants: a class of reagents for quantitative mass spectrometric analysis of complex protein mixtures.
    Qiu Y; Sousa EA; Hewick RM; Wang JH
    Anal Chem; 2002 Oct; 74(19):4969-79. PubMed ID: 12380819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of visible isotope-coded affinity tags for the absolute quantification of specific proteins in complex mixtures.
    Bottari P; Aebersold R; Turecek F; Gelb MH
    Bioconjug Chem; 2004; 15(2):380-8. PubMed ID: 15025535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability.
    Lee YH; Han H; Chang SB; Lee SW
    Rapid Commun Mass Spectrom; 2004; 18(24):3019-27. PubMed ID: 15536630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-reactive covalent capture tags for enrichment of cysteine-containing peptides.
    Giron P; Dayon L; Mihala N; Sanchez JC; Rose K
    Rapid Commun Mass Spectrom; 2009 Nov; 23(21):3377-86. PubMed ID: 19813279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin: a new cleavage mixture prevents their formation.
    Stathopoulos P; Papas S; Tsikaris V
    J Pept Sci; 2006 Mar; 12(3):227-32. PubMed ID: 16103992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent isotope-coded affinity tag (FCAT). I: Design and synthesis.
    Rivera-Monroy Z; Bonn GK; Guttman A
    Bioorg Chem; 2008 Dec; 36(6):299-311. PubMed ID: 18848712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass tagging approach for mitochondrial thiol proteins.
    Marley K; Mooney DT; Clark-Scannell G; Tong TT; Watson J; Hagen TM; Stevens JF; Maier CS
    J Proteome Res; 2005; 4(4):1403-12. PubMed ID: 16083293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel pyrimidine-based stable-isotope labeling reagent and its application to quantitative analysis using matrix-assisted laser desorption/ionization mass spectrometry.
    Zhang J; Zhang L; Zhou Y; Guo YL
    J Mass Spectrom; 2007 Nov; 42(11):1514-21. PubMed ID: 17618528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective isolation of N-blocked peptides by isocyanate-coupled resin.
    Mikami T; Takao T
    Anal Chem; 2007 Oct; 79(20):7910-5. PubMed ID: 17854203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative protein analysis by solid phase isotope tagging and mass spectrometry.
    Zhou H; Boyle R; Aebersold R
    Methods Mol Biol; 2004; 261():511-8. PubMed ID: 15064479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent isotope-coded affinity tag 2: peptide labeling and affinity capture.
    Rivera-Monroy Z; Bonn GK; Guttman A
    Electrophoresis; 2009 Apr; 30(7):1111-8. PubMed ID: 19288590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for monitoring the cysteine content in synthetic peptides.
    Horváti K; Bõsze S; Hudecz F; Medzihradszky-Schweiger H
    J Pept Sci; 2008 Jul; 14(7):838-44. PubMed ID: 18265426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-based peptide labeling and fractionation strategies for analysis of cysteine-containing peptides.
    Clements A; Johnston MV; Larsen BS; McEwen CN
    Anal Chem; 2005 Jul; 77(14):4495-502. PubMed ID: 16013865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of semiquantitative proteomics techniques to the maillard reaction.
    Ames JM
    Ann N Y Acad Sci; 2005 Jun; 1043():225-35. PubMed ID: 16037243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.