These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15104004)

  • 1. Heavy charged particle radio therapy.
    Goitein M
    Z Med Phys; 2004; 14(1):1-3. PubMed ID: 15104004
    [No Abstract]   [Full Text] [Related]  

  • 2. Neutron capture therapy in support of other radiation treatment.
    Larsson B
    Basic Life Sci; 1989; 50():21-6. PubMed ID: 2751610
    [No Abstract]   [Full Text] [Related]  

  • 3. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fifteenth International Congress on Neutron Capture Therapy. Preface.
    Matsumura A
    Appl Radiat Isot; 2014 Jun; 88():1. PubMed ID: 24908621
    [No Abstract]   [Full Text] [Related]  

  • 5. Measurement of the 9Be(p,n) thick target spectrum for use in accelerator-based boron neutron capture therapy.
    Howard WB; Yanch JC; Grimes SM; Massey TN; al-Quraishi SI; Jacobs DK; Brient CE
    Med Phys; 1996 Jul; 23(7):1233-5. PubMed ID: 8839418
    [No Abstract]   [Full Text] [Related]  

  • 6. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold.
    Zimin S; Allen BJ
    Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerators for heavy-charged-particle radiation therapy.
    Coutrakon GB
    Technol Cancer Res Treat; 2007 Aug; 6(4 Suppl):49-54. PubMed ID: 17668952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction.
    Zimin S; Allen BJ
    Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT).
    Moss RL
    Appl Radiat Isot; 2014 Jun; 88():2-11. PubMed ID: 24355301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an accelerator-based neutron source for neutron capture therapy.
    Terlizzi R; Colonna N; Colangelo P; Maiorana A; Marrone S; Rainò A; Tagliente G; Variale V
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S292-5. PubMed ID: 19406649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A shielding design for an accelerator-based neutron source for boron neutron capture therapy.
    Hawk AE; Blue TE; Woollard JE
    Appl Radiat Isot; 2004 Nov; 61(5):1027-31. PubMed ID: 15308187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DESIGN IMPROVEMENT OF A LIQUID-MODERATOR-BASED NEUTRON SPECTROMETER FOR BNCT.
    Tamaki S; Kusaka S; Sato F; Murata I
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):300-303. PubMed ID: 29088420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of BNCT based on research using accelerator based neutron source].
    Kumada H
    Igaku Butsuri; 2012; 32(3):104-10. PubMed ID: 24592679
    [No Abstract]   [Full Text] [Related]  

  • 16. Current progress and future prospects of the VITA based neutron source.
    Aleynik V; Bashkirtsev A; Kanygin V; Kasatov D; Kuznetsov A; Makarov A; Schudlo I; Sorokin I; Taskaev S; Tiunov M
    Appl Radiat Isot; 2014 Jun; 88():177-9. PubMed ID: 24369890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A design study for an accelerator-based epithermal neutron beam for BNCT.
    Allen DA; Beynon TD
    Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumour shapes and fully automated range compensation for heavy charged particle radiotherapy.
    Kanematsu N; Asakura H; Kohno R; Takahashi O
    Phys Med Biol; 2004 Jan; 49(2):N1-5. PubMed ID: 15083676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.