These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15104007)

  • 1. The PSI Gantry 2: a second generation proton scanning gantry.
    Pedroni E; Bearpark R; Böhringer T; Coray A; Duppich J; Forss S; George D; Grossmann M; Goitein G; Hilbes C; Jermann M; Lin S; Lomax A; Negrazus M; Schippers M; Kotle G
    Z Med Phys; 2004; 14(1):25-34. PubMed ID: 15104007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a compact proton scanning system in Uppsala with a moveable second magnet.
    Lorin S; Grusell E; Tilly N; Medin J; Blom M; Ziemann V; Reistad D; Glimelius B
    Phys Med Biol; 2000 May; 45(5):1151-63. PubMed ID: 10843097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization.
    Pedroni E; Bacher R; Blattmann H; Böhringer T; Coray A; Lomax A; Lin S; Munkel G; Scheib S; Schneider U
    Med Phys; 1995 Jan; 22(1):37-53. PubMed ID: 7715569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large energy acceptance gantry for proton therapy utilizing superconducting technology.
    Nesteruk KP; Calzolaio C; Meer D; Rizzoglio V; Seidel M; Schippers JM
    Phys Med Biol; 2019 Aug; 64(17):175007. PubMed ID: 31272087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oblique gantry--an alternative for heavy-ion cancer therapy.
    Pavlovic M
    Strahlenther Onkol; 1999 Jun; 175 Suppl 2():24-6. PubMed ID: 10394390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry.
    Maradia V; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2021 Dec; 48(12):7613-7622. PubMed ID: 34655083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The M. D. Anderson proton therapy system.
    Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K
    Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
    Masood U; Cowan TE; Enghardt W; Hofmann KM; Karsch L; Kroll F; Schramm U; Wilkens JJ; Pawelke J
    Phys Med Biol; 2017 Jul; 62(13):5531-5555. PubMed ID: 28609301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beam optics design of compact gantry for proton therapy.
    Pedroni E; Enge H
    Med Biol Eng Comput; 1995 May; 33(3):271-7. PubMed ID: 7475362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proton therapy system for MGH's NPTC: equipment description and progress report.
    Jongen Y; Beeckman W; Cohilis P
    Bull Cancer Radiother; 1996; 83 Suppl():219s-22s. PubMed ID: 8949784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry.
    Maradia V; Giovannelli AC; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2022 Apr; 49(4):2183-2192. PubMed ID: 35099067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary investigations for the option to use fast uniform scanning with compensators on a gantry designed for IMPT.
    Zenklusen SM; Pedroni E; Meer D; Bula C; Safai S
    Med Phys; 2011 Sep; 38(9):5208-16. PubMed ID: 21978065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam characteristics and clinical possibilities of a new compact treatment unit design combining narrow pencil beam scanning and segmental multileaf collimation.
    Svensson R; Lind B; Brahme A
    Med Phys; 1998 Dec; 25(12):2358-69. PubMed ID: 9874828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.
    Gerbershagen A; Meer D; Schippers JM; Seidel M
    Z Med Phys; 2016 Sep; 26(3):224-37. PubMed ID: 27084590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commissioning of the world's first compact pencil-beam scanning proton therapy system.
    Pidikiti R; Patel BC; Maynard MR; Dugas JP; Syh J; Sahoo N; Wu HT; Rosen LR
    J Appl Clin Med Phys; 2018 Jan; 19(1):94-105. PubMed ID: 29152838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy.
    Ding X; Li X; Zhang JM; Kabolizadeh P; Stevens C; Yan D
    Int J Radiat Oncol Biol Phys; 2016 Dec; 96(5):1107-1116. PubMed ID: 27869083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.
    Achterberg N; Müller RG
    Med Phys; 2007 Oct; 34(10):3926-42. PubMed ID: 17985638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton Therapy Facility Planning From a Clinical and Operational Model.
    Das IJ; Moskvin VP; Zhao Q; Cheng CW; Johnstone PA
    Technol Cancer Res Treat; 2015 Oct; 14(5):635-41. PubMed ID: 24988058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI.
    Zenklusen SM; Pedroni E; Meer D
    Phys Med Biol; 2010 Sep; 55(17):5103-21. PubMed ID: 20702927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.