BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15104134)

  • 1. Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate.
    Morono Y; Takano S; Miyanaga K; Tanji Y; Unno H; Hori K
    Biotechnol Lett; 2004 Mar; 26(5):379-83. PubMed ID: 15104134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product.
    Breeuwer P; Drocourt JL; Bunschoten N; Zwietering MH; Rombouts FM; Abee T
    Appl Environ Microbiol; 1995 Apr; 61(4):1614-9. PubMed ID: 7747975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity.
    Hoefel D; Grooby WL; Monis PT; Andrews S; Saint CP
    J Microbiol Methods; 2003 Mar; 52(3):379-88. PubMed ID: 12531507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar fluorescein derivatives as improved substrate probes for flow cytoenzymological assay of cellular esterases.
    Dive C; Cox H; Watson JV; Workman P
    Mol Cell Probes; 1988 Jun; 2(2):131-45. PubMed ID: 3173358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound.
    Ananta E; Voigt D; Zenker M; Heinz V; Knorr D
    J Appl Microbiol; 2005; 99(2):271-8. PubMed ID: 16033457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxyfluorescein diacetate succinimidyl ester fluorescent dye for cell labeling.
    Wang XQ; Duan XM; Liu LH; Fang YQ; Tan Y
    Acta Biochim Biophys Sin (Shanghai); 2005 Jun; 37(6):379-85. PubMed ID: 15944752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Possible Flow Cytometry-Based Viability and Vitality Assessment Protocol for Pathogenic
    Singh A; Barnard TG
    Biomed Res Int; 2021; 2021():5551845. PubMed ID: 34212032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective labeling of embryonic neurons cultured on astrocyte monolayers with 5(6)-carboxyfluorescein diacetate (CFDA).
    Petroski RE; Geller HM
    J Neurosci Methods; 1994 Apr; 52(1):23-32. PubMed ID: 8090014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments.
    Fuller ME; Streger SH; Rothmel RK; Mailloux BJ; Hall JA; Onstott TC; Fredrickson JK; Balkwill DL; DeFlaun MF
    Appl Environ Microbiol; 2000 Oct; 66(10):4486-96. PubMed ID: 11010903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid detection of viable microbes with 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride and 5(6)-carboxyfluorescein diacetate using a fibre fluorescence spectroscopy system.
    Chiang J; Robertson J; McGoverin CM; Swift S; Vanholsbeeck F
    J Appl Microbiol; 2024 Mar; 135(3):. PubMed ID: 38383865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of air drying on bacterial viability: A multiparameter viability assessment.
    Nocker A; Fernández PS; Montijn R; Schuren F
    J Microbiol Methods; 2012 Aug; 90(2):86-95. PubMed ID: 22575714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of image-based flow cytometry in bacterial viability analysis using fluorescent probes.
    Pan Y; Kaatz L
    Curr Protoc Microbiol; 2012 Nov; Chapter 2():Unit 2C.5.. PubMed ID: 23184595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved method for the selective detection of fungi in hospital waters by solid phase cytometry.
    De Vos MM; Nelis HJ
    J Microbiol Methods; 2006 Dec; 67(3):557-65. PubMed ID: 16884797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products.
    Baumstummler A; Chollet R; Meder H; Olivieri F; Rouillon S; Waiche G; Ribault S
    J Appl Microbiol; 2011 Jan; 110(1):69-79. PubMed ID: 20880209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual fluorochrome flow cytometric assessment of yeast viability.
    Hernlem B; Hua SS
    Curr Microbiol; 2010 Jul; 61(1):57-63. PubMed ID: 20049598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of the fluorescent probe viability assay.
    Massaro EJ; Elstein KH; Zucker RM; Bair KW
    Mol Toxicol; 1989; 2(4):271-84. PubMed ID: 2490980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress.
    Amor KB; Breeuwer P; Verbaarschot P; Rombouts FM; Akkermans AD; De Vos WM; Abee T
    Appl Environ Microbiol; 2002 Nov; 68(11):5209-16. PubMed ID: 12406706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a vital fluorescent staining method for simultaneous, near-real-time concentration monitoring of two bacterial strains in an Atlantic coastal plain aquifer in Oyster, Virginia.
    Fuller ME; Mailloux BJ; Streger SH; Hall JA; Zhang P; Kovacik WP; Vainberg S; Johnson WP; Onstott TC; DeFlaun MF
    Appl Environ Microbiol; 2004 Mar; 70(3):1680-7. PubMed ID: 15006793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid counting method of living cells by fluorescent enzyme substrates.
    Sugata K; Ohnishi T; Matsumoto K
    Biomed Mater Eng; 1991; 1(2):115-25. PubMed ID: 1364630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater.
    Hu W; Murata K; Zhang D
    J Environ Sci (China); 2017 Jan; 51():202-213. PubMed ID: 28115131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.