These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1510561)

  • 41. Quantitative determination of human aldose reductase by enzyme-linked immunosorbent assay. Immunoassay of human aldose reductase.
    Nishimura C; Furue M; Ito T; Omori Y; Tanimoto T
    Biochem Pharmacol; 1993 Jul; 46(1):21-8. PubMed ID: 8347133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rat lens aldehyde reductase.
    Sato S; Kador PF
    Invest Ophthalmol Vis Sci; 1989 Jul; 30(7):1618-22. PubMed ID: 2501231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and characterization of aldose reductase and aldehyde reductase from human kidney.
    Ansari NH; Bhatnagar A; Liu SQ; Srivastava SK
    Biochem Int; 1991 Nov; 25(4):755-65. PubMed ID: 1815509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunochemical and catalytical characterization of the human liver NADPH-cytochrome P450 reductase.
    McManus ME; Huggett A; Burgess W; Robson R; Birkett DJ
    Clin Exp Pharmacol Physiol; 1989 Feb; 16(2):121-34. PubMed ID: 2496944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymes of glucose isomerization in various microorganisms.
    Suekane M; Iizuka H
    Z Allg Mikrobiol; 1981; 21(6):457-68. PubMed ID: 7293246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.
    Spite M; Baba SP; Ahmed Y; Barski OA; Nijhawan K; Petrash JM; Bhatnagar A; Srivastava S
    Biochem J; 2007 Jul; 405(1):95-105. PubMed ID: 17381426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lactase activity of microorganisms.
    Rao MV; Dutta SM
    Folia Microbiol (Praha); 1978; 23(3):210-5. PubMed ID: 97187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Auiyawong B; Narawongsanont R; Tantitadapitak C
    Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lens aldo-keto reductase of Camelus dromedarius: purification and properties.
    Del Corso A; Barsacchi D; Osman AM; Mohamed AS; Tozzi MG; Camici M; Mura U
    Biochim Biophys Acta; 1989 Oct; 993(1):116-20. PubMed ID: 2679888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative anatomy of the aldo-keto reductase superfamily.
    Jez JM; Bennett MJ; Schlegel BP; Lewis M; Penning TM
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):625-36. PubMed ID: 9307009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and identification of three novel aldo-keto reductases from Lodderomyces elongisporus for reducing ethyl 4-chloroacetoacetate.
    Ning C; Su E; Wei D
    Arch Biochem Biophys; 2014 Dec; 564():219-28. PubMed ID: 25447817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dihydrodiol dehydrogenase activities of rabbit liver are associated with hydroxysteroid dehydrogenases and aldo-keto reductases.
    Klein J; Thomas H; Post K; Wörner W; Oesch F
    Eur J Biochem; 1992 May; 205(3):1155-62. PubMed ID: 1576998
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean.
    Nagahama T; Hamamoto M; Nakase T; Takami H; Horikoshi K
    Antonie Van Leeuwenhoek; 2001 Oct; 80(2):101-10. PubMed ID: 11759043
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and characterization of aldo-keto reductases from gerbil liver: immunochemical evidence for related proteins in other mammalian species.
    Molowa DT; Wrighton SA; Guzelian PS
    Arch Biochem Biophys; 1986 Dec; 251(2):487-94. PubMed ID: 3541787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.
    Barski OA; Gabbay KH; Bohren KM
    Biochemistry; 1996 Nov; 35(45):14276-80. PubMed ID: 8916913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases.
    Calam E; Porté S; Fernández MR; Farrés J; Parés X; Biosca JA
    Chem Biol Interact; 2013 Feb; 202(1-3):195-203. PubMed ID: 23295224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-Specific Peculiarities of Modulation of Blood Aldo-Keto Reductase Isoenzyme Spectrum.
    Davydov VV
    Bull Exp Biol Med; 2015 Dec; 160(2):199-201. PubMed ID: 26639467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a role for a mouse sperm surface aldo-keto reductase (AKR1B7) and its human analogue in the detoxification of the reactive aldehyde, acrolein.
    Jagoe WN; Howe K; O'Brien SC; Carroll J
    Andrologia; 2013 Oct; 45(5):326-31. PubMed ID: 22970857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Groups and sources of yeasts in house dust].
    Glushakova AM; Zheltikova TM; Chernov IIu
    Mikrobiologiia; 2004; 73(1):111-7. PubMed ID: 15074050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.