These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1510672)

  • 1. Microbial oxidation of adamantanone by Pseudomonas putida carrying the camphor catabolic plasmid.
    Selifonov SA
    Biochem Biophys Res Commun; 1992 Aug; 186(3):1429-36. PubMed ID: 1510672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.
    Iwaki H; Grosse S; Bergeron H; Leisch H; Morley K; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2013 May; 79(10):3282-93. PubMed ID: 23524667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformations of 2-methylisoborneol by camphor-degrading bacteria.
    Eaton RW; Sandusky P
    Appl Environ Microbiol; 2009 Feb; 75(3):583-8. PubMed ID: 19060161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diketocamphane enantiomer-specific 'Baeyer-Villiger' monooxygenases from camphor-grown Pseudomonas putida ATCC 17453.
    Jones KH; Smith RT; Trudgill PW
    J Gen Microbiol; 1993 Apr; 139(4):797-805. PubMed ID: 8515237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of camphor oxidation and reduction products in Pseudomonas putida: new activity of the cytochrome P450cam system.
    Prasad B; Rojubally A; Plettner E
    J Chem Ecol; 2011 Jun; 37(6):657-67. PubMed ID: 21562741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Microbiological transformation of adamantanes].
    Starovoĭtov II; Bagriĭ EI; Slepen'kin AV; Adanin VM; Kashparov KI; Boronin AM; Platè NA; Petrov RV
    Dokl Akad Nauk; 1994 Jan; 334(2):241-4. PubMed ID: 8167582
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemotaxis by Pseudomonas putida (ATCC 17453) towards camphor involves cytochrome P450
    Balaraman P; Plettner E
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):304-312. PubMed ID: 30391161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Localization of camphor degradative plasmids on the chromosome of Pseudomonas putida strains PaW].
    Miaé AA; Kheĭnaru AL
    Genetika; 1991 Mar; 27(3):389-98. PubMed ID: 1855659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel reactivity of cytochrome P-450-CAM. Methyl hydroxylation of 5,5-difluorocamphor.
    Eble KS; Dawson JH
    J Biol Chem; 1984 Dec; 259(23):14389-93. PubMed ID: 6501299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of a cam repressor (CamR) for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid.
    Aramaki H; Sagara Y; Kabata H; Shimamoto N; Horiuchi T
    J Bacteriol; 1995 Jun; 177(11):3120-7. PubMed ID: 7768809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription of the cam operon and camR genes in Pseudomonas putida PpG1.
    Fujita M; Aramaki H; Horiuchi T; Amemura A
    J Bacteriol; 1993 Nov; 175(21):6953-8. PubMed ID: 7693653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli.
    Kadow M; Balke K; Willetts A; Bornscheuer UT; Bäckvall JE
    Appl Microbiol Biotechnol; 2014 May; 98(9):3975-86. PubMed ID: 24190498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization.
    Kadow M; Loschinski K; Sass S; Schmidt M; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):419-29. PubMed ID: 22286514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis of (R)-(+)-lipoic acid using a monooxygenase-catalysed biotransformation as the key step.
    Adger B; Bes MT; Grogan G; McCague R; Pedragosa-Moreau S; Roberts SM; Villa R; Wan PW; Willetts AJ
    Bioorg Med Chem; 1997 Feb; 5(2):253-61. PubMed ID: 9061190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440.
    Niewerth H; Bergander K; Chhabra SR; Williams P; Fetzner S
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1399-408. PubMed ID: 21670979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion and compatibility of camphor and octane plasmids in Pseudomonas.
    Chou GI; Katz D; Gunsalus IC
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2675-8. PubMed ID: 4527812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regioselectivity in the cytochromes P-450: control by protein constraints and by chemical reactivities.
    White RE; McCarthy MB; Egeberg KD; Sligar SG
    Arch Biochem Biophys; 1984 Feb; 228(2):493-502. PubMed ID: 6696444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of repressor-inducer-operator ternary complex: negative cooperativity of d-camphor binding to CamR.
    Aramaki H; Kabata H; Takeda S; Itou H; Nakayama H; Shimamoto N
    Genes Cells; 2011 Dec; 16(12):1200-7. PubMed ID: 22093184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformations of morphine alkaloids by Pseudomonas putida M10.
    Long MT; Hailes AM; Kirby GW; Bruce NC
    Appl Environ Microbiol; 1995 Oct; 61(10):3645-9. PubMed ID: 7487001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.