BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 1510689)

  • 21. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the succinate dehydrogenating system. Interaction of the mitochondrial succinate-ubiquinone reductase with pyridoxal phosphate.
    Choudhry ZM; Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1986 Jun; 850(1):131-8. PubMed ID: 3707947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Catalytic dimorphism of soluble succinate : ubiquinone reductase].
    Tushurashvili PR; Gavrikova EV; Vinogradov AD
    Dokl Akad Nauk SSSR; 1985; 281(5):1261-5. PubMed ID: 4006694
    [No Abstract]   [Full Text] [Related]  

  • 24. [Vitamin E, ubiquinone and ubiquinone-dependent enzymes in experimental myocarditis].
    Kuz'menko IV; Kunitsa NI; Kovalenko VN; Donchenko GV
    Ukr Biokhim Zh (1978); 1991; 63(3):90-3. PubMed ID: 1926593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid ubiquinone: novel inhibitor of mitochondrial complex I.
    Yabunaka H; Kenmochi A; Nakatogawa Y; Sakamoto K; Miyoshi H
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):106-12. PubMed ID: 12460667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of bovine heart mitochondrial cytochrome b560.
    Yu L; Xu JX; Haley PE; Yu CA
    J Biol Chem; 1987 Jan; 262(3):1137-43. PubMed ID: 3027080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes.
    Van Hellemond JJ; Klockiewicz M; Gaasenbeek CP; Roos MH; Tielens AG
    J Biol Chem; 1995 Dec; 270(52):31065-70. PubMed ID: 8537365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of malate by the mitochondrial succinate-ubiquinone reductase.
    Belikova YO; Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1988 Oct; 936(1):1-9. PubMed ID: 2902878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase.
    Yankovskaya V; Sablin SO; Ramsay RR; Singer TP; Ackrell BA; Cecchini G; Miyoshi H
    J Biol Chem; 1996 Aug; 271(35):21020-4. PubMed ID: 8702865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cDNA sequence of beef heart CII-3, a membrane-intrinsic subunit of succinate-ubiquinone oxidoreductase.
    Cochran B; Capaldi RA; Ackrell BA
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):162-6. PubMed ID: 7947903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F; Yu L; He DY; Yu CA
    J Biol Chem; 1991 Nov; 266(31):20863-9. PubMed ID: 1657937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of a histidine residue in the interaction between membrane-anchoring protein (QPs) and succinate dehydrogenase in mitochondrial succinate-ubiquinone reductase.
    Paudel HK; Yu L; Yu CA
    Biochim Biophys Acta; 1991 Jan; 1056(2):159-65. PubMed ID: 1993211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and properties of succinate-ubiquinone oxidoreductase complex from Paracoccus denitrificans.
    Pennoyer JD; Ohnishi T; Trumpower BL
    Biochim Biophys Acta; 1988 Sep; 935(2):195-207. PubMed ID: 2843228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects.
    Shults CW; Haas RH; Passov D; Beal MF
    Ann Neurol; 1997 Aug; 42(2):261-4. PubMed ID: 9266740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the succinate dehydrogenating system. II. Reconstitution of succinate-ubiquinone reductase from the soluble components.
    Vinogradov AD; Gavrikov VG; Gavrikova EV
    Biochim Biophys Acta; 1980 Aug; 592(1):13-27. PubMed ID: 7397135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of quinone-binding and heme-ligating residues of the smallest membrane-anchoring subunit (QPs3) of bovine heart mitochondrial succinate:ubiquinone reductase.
    Shenoy SK; Yu L; Yu Ca
    J Biol Chem; 1999 Mar; 274(13):8717-22. PubMed ID: 10085111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The smallest membrane anchoring subunit (QPs3) of bovine heart mitochondrial succinate-ubiquinone reductase. Cloning, sequencing, topology, and Q-binding domain.
    Shenoy SK; Yu L; Yu CA
    J Biol Chem; 1997 Jul; 272(28):17867-72. PubMed ID: 9211943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Succinate-ubiquinone reductase site of the respiratory chain].
    Vinogradov AD
    Biokhimiia; 1986 Dec; 51(12):1944-73. PubMed ID: 3542059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives.
    He DY; Yu L; Yu CA
    J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.