BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15107015)

  • 1. Thermal and conformational stability of Ssh10b protein from archaeon Sulfolobus shibattae.
    Xu S; Qin S; Pan XM
    Biochem J; 2004 Sep; 382(Pt 2):433-40. PubMed ID: 15107015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal unfolding of the archaeal DNA and RNA binding protein Ssh10.
    Wu X; Oppermann M; Berndt KD; Bergman T; Jörnvall H; Knapp S; Oppermann U
    Biochem Biophys Res Commun; 2008 Sep; 373(4):482-7. PubMed ID: 18571501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding of the hyperthermophilic protein Ssh10b involves a kinetic dimeric intermediate.
    Ge M; Mao YJ; Pan XM
    Extremophiles; 2009 Jan; 13(1):131-7. PubMed ID: 19002648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stabilizing alpha/beta-hydrophobic core greatly contributes to hyperthermostability of archaeal [P62A]Ssh10b.
    Fang X; Cui Q; Tong Y; Feng Y; Shan L; Huang L; Wang J
    Biochemistry; 2008 Oct; 47(43):11212-21. PubMed ID: 18821773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus.
    Knapp S; Karshikoff A; Berndt KD; Christova P; Atanasov B; Ladenstein R
    J Mol Biol; 1996 Dec; 264(5):1132-44. PubMed ID: 9000635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Granata V; Vecchio PD; Barone G; Shehi E; Fusi P; Tortora P; Graziano G
    Int J Biol Macromol; 2004 Jun; 34(3):195-201. PubMed ID: 15225992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational and thermodynamic characterization of the molten globule state occurring during unfolding of cytochromes-c by weak salt denaturants.
    Qureshi SH; Moza B; Yadav S; Ahmad F
    Biochemistry; 2003 Feb; 42(6):1684-95. PubMed ID: 12578383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conformational stability of the Streptomyces coelicolor histidine-phosphocarrier protein. Characterization of cold denaturation and urea-protein interactions.
    Neira JL; Gómez J
    Eur J Biochem; 2004 Jun; 271(11):2165-81. PubMed ID: 15153107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic stability of annexin V E17G: equilibrium parameters from an irreversible unfolding reaction.
    Vogl T; Jatzke C; Hinz HJ; Benz J; Huber R
    Biochemistry; 1997 Feb; 36(7):1657-68. PubMed ID: 9048549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two conformations of archaeal Ssh10b. The origin of its temperature-dependent interaction with DNA.
    Cui Q; Tong Y; Xue H; Huang L; Feng Y; Wang J
    J Biol Chem; 2003 Dec; 278(51):51015-22. PubMed ID: 14523014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding and association of an extremely stable dimeric protein from Sulfolobus islandicus.
    Zeeb M; Lipps G; Lilie H; Balbach J
    J Mol Biol; 2004 Feb; 336(1):227-40. PubMed ID: 14741218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and kinetics of unfolding of the thermostable trimeric adenylate kinase from the archaeon Sulfolobus acidocaldarius.
    Backmann J; Schäfer G; Wyns L; Bönisch H
    J Mol Biol; 1998 Dec; 284(3):817-33. PubMed ID: 9826518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the influence of hyperthermophilic protein Ssh10b on the stability and conformation of RNA by molecular dynamics simulation.
    Zhang X; Zheng QC
    Biopolymers; 2018 Jan; 109(1):. PubMed ID: 29068057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of sequence-specific protein-DNA association: conformational stability of the DNA binding domain of integrase Tn916 and its cognate DNA duplex.
    Milev S; Gorfe AA; Karshikoff A; Clubb RT; Bosshard HR; Jelesarov I
    Biochemistry; 2003 Apr; 42(12):3492-502. PubMed ID: 12653553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High stability of a ferredoxin from the hyperthermophilic archaeon A. ambivalens: involvement of electrostatic interactions and cofactors.
    Moczygemba C; Guidry J; Jones KL; Gomes CM; Teixeira M; Wittung-Stafshede P
    Protein Sci; 2001 Aug; 10(8):1539-48. PubMed ID: 11468351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d.
    McCrary BS; Edmondson SP; Shriver JW
    J Mol Biol; 1996 Dec; 264(4):784-805. PubMed ID: 8980686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.