These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15107433)

  • 1. The transepithelial voltage of the isolated anterior stomach of mosquito larvae (Aedes aegypti): pharmacological characterization of the serotonin-stimulated cells.
    Onken H; Moffett SB; Moffett DF
    J Exp Biol; 2004 May; 207(Pt 11):1779-87. PubMed ID: 15107433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkalinization in the isolated and perfused anterior midgut of the larval mosquito, Aedes aegypti.
    Onken H; Moffett SB; Moffett DF
    J Insect Sci; 2008; 8():1-20. PubMed ID: 20307229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular mechanisms of acid secretion in the posterior midgut of the larval mosquito (Aedes aegypti).
    Jagadeshwaran U; Onken H; Hardy M; Moffett SB; Moffett DF
    J Exp Biol; 2010 Jan; 213(2):295-300. PubMed ID: 20038664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anterior stomach of larval mosquitoes (Aedes aegypti): effects of neuropeptides on transepithelial ion transport and muscular motility.
    Onken H; Moffett SB; Moffett DF
    J Exp Biol; 2004 Oct; 207(Pt 21):3731-9. PubMed ID: 15371480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): effects of amino acids, dicarboxylic acids, and glucose on the transepithelial voltage and strong luminal alkalinization.
    Izeirovski S; Moffett SB; Moffett DF; Onken H
    J Exp Zool A Ecol Genet Physiol; 2009 Nov; 311(9):719-26. PubMed ID: 19637352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The isolated anterior stomach of larval mosquitoes (Aedes aegypti): voltage-clamp measurements with a tubular epithelium.
    Onken H; Moffett SB; Moffett DF
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Jan; 143(1):24-34. PubMed ID: 16310390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti.
    Scott BN; Yu MJ; Lee LW; Beyenbach KW
    J Exp Biol; 2004 Apr; 207(Pt 10):1655-63. PubMed ID: 15073198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of locally applied drugs on the endolymphatic sac potential.
    Couloigner V; Loiseau A; Sterkers O; Amiel C; Ferrary E
    Laryngoscope; 1998 Apr; 108(4 Pt 1):592-8. PubMed ID: 9546276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of bicarbonate secretion by resting frog stomach fundus mucosa. I. Transepithelial measurements.
    Curci S; Debellis L; Caroppo R; Frömter E
    Pflugers Arch; 1994 Oct; 428(5-6):648-54. PubMed ID: 7838688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anterior and posterior 'stomach' regions of larval Aedes aegypti midgut: regional specialization of ion transport and stimulation by 5-hydroxytryptamine.
    Clark TM; Koch A; Moffett DF
    J Exp Biol; 1999 Feb; 202(Pt 3):247-52. PubMed ID: 9882637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid absorption in the isolated midgut of adult female yellow fever mosquitoes (Aedes aegypti).
    Onken H; Moffett DF
    J Exp Biol; 2015 Jul; 218(Pt 13):2023-9. PubMed ID: 25944920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti.
    Del Duca O; Nasirian A; Galperin V; Donini A
    J Exp Biol; 2011 Dec; 214(Pt 23):3992-9. PubMed ID: 22071191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restitution of the bullfrog gastric mucosa is dependent on a DIDS-inhibitable pathway not related to HCO3- ion transport.
    Hagen SJ; Morrison SW; Law CS; Yang DX
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G596-605. PubMed ID: 14604862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of epithelial shunt conductance by the peptide leucokinin.
    Pannabecker TL; Hayes TK; Beyenbach KW
    J Membr Biol; 1993 Feb; 132(1):63-76. PubMed ID: 8459448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes.
    Donini A; O'Donnell MJ
    J Exp Biol; 2005 Feb; 208(Pt 4):603-10. PubMed ID: 15695753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Furosemide-sensitive Cl transport in embryonic chicken retinal pigment epithelium.
    Frambach DA; Misfeldt DS
    Am J Physiol; 1983 Jun; 244(6):F679-85. PubMed ID: 6859259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).
    Pacey EK; O'Donnell MJ
    J Insect Physiol; 2014 Feb; 61():42-50. PubMed ID: 24406662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ion transport and channel-blocking drugs on aqueous humor formation in isolated bovine eye.
    Shahidullah M; Wilson WS; Yap M; To CH
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1185-91. PubMed ID: 12601048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active NaCl absorption across posterior gills of hyperosmoregulating Chasmagnathus granulatus.
    Onken H; Tresguerres M; Luquet CM
    J Exp Biol; 2003 Mar; 206(Pt 6):1017-23. PubMed ID: 12582144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.