BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15107447)

  • 1. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study.
    Latz MI; Juhl AR; Ahmed AM; Elghobashi SE; Rohr J
    J Exp Biol; 2004 May; 207(Pt 11):1941-51. PubMed ID: 15107447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear-stress dependence of dinoflagellate bioluminescence.
    Maldonado EM; Latz MI
    Biol Bull; 2007 Jun; 212(3):242-9. PubMed ID: 17565113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental approaches towards interpreting dolphin-stimulated bioluminescence.
    Rohr J; Latz MI; Fallon S; Nauen JC; Hendricks E
    J Exp Biol; 1998 May; 201(Pt 9):1447-60. PubMed ID: 9547324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of dinoflagellate bioluminescence to characterize cell stimulation in bioreactors.
    Chen AK; Latz MI; Frangos JA
    Biotechnol Bioeng; 2003 Jul; 83(1):93-103. PubMed ID: 12740936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device.
    Latz MI; Bovard M; VanDelinder V; Segre E; Rohr J; Groisman A
    J Exp Biol; 2008 Sep; 211(Pt 17):2865-75. PubMed ID: 18723546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence.
    Chen AK; Latz MI; Sobolewski P; Frangos JA
    Am J Physiol Regul Integr Comp Physiol; 2007 May; 292(5):R2020-7. PubMed ID: 17322118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble stimulation efficiency of dinoflagellate bioluminescence.
    Deane GB; Stokes MD; Latz MI
    Luminescence; 2016 Feb; 31(1):270-80. PubMed ID: 26061152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for shear-induced increase in membrane fluidity in the dinoflagellate Lingulodinium polyedrum.
    Mallipattu SK; Haidekker MA; Von Dassow P; Latz MI; Frangos JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jun; 188(5):409-16. PubMed ID: 12073085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Ca(2+) in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum.
    von Dassow P; Latz MI
    J Exp Biol; 2002 Oct; 205(Pt 19):2971-86. PubMed ID: 12200401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioluminescence in Dinoflagellates: Evidence that the Adaptive Value of Bioluminescence in Dinoflagellates is Concentration Dependent.
    Hanley KA; Widder EA
    Photochem Photobiol; 2017 Mar; 93(2):519-530. PubMed ID: 28063175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative model for flow-induced bioluminescence in dinoflagellates.
    Deane GB; Stokes MD
    J Theor Biol; 2005 Nov; 237(2):147-69. PubMed ID: 15975605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanosensitivity of a rapid bioluminescence reporter system assessed by atomic force microscopy.
    Tesson B; Latz MI
    Biophys J; 2015 Mar; 108(6):1341-1351. PubMed ID: 25809248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological investigation of the bioluminescence signaling pathway of the dinoflagellate Lingulodinium polyedrum: evidence for the role of stretch-activated ion channels.
    Jin K; Klima JC; Deane G; Dale Stokes M; Latz MI
    J Phycol; 2013 Aug; 49(4):733-45. PubMed ID: 27007206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation.
    Roy S; Letourneau L; Morse D
    Plant Physiol; 2014 Feb; 164(2):966-77. PubMed ID: 24335505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum.
    Moorthi SD; Countway PD; Stauffer BA; Caron DA
    Microb Ecol; 2006 Jul; 52(1):136-50. PubMed ID: 16691324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentalization of algal bioluminescence: autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry.
    Johnson CH; Inoué S; Flint A; Hastings JW
    J Cell Biol; 1985 May; 100(5):1435-46. PubMed ID: 4039325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemical mimicking of the mechanical stimulation, photoinhibition, and recovery from photoinhibition of bioluminescence in marine dinoflagellate, Gonyaulax polyedra.
    Hamman JP; Seliger HH
    J Cell Physiol; 1982 Jun; 111(3):315-9. PubMed ID: 6807998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Study of Dinoflagellate Bioluminescence.
    Wang MY; Liu YJ
    Photochem Photobiol; 2017 Mar; 93(2):511-518. PubMed ID: 27796046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into shear-sensitivity in dinoflagellate microalgae.
    Gallardo-Rodríguez JJ; López-Rosales L; Sánchez-Mirón A; García-Camacho F; Molina-Grima E; Chalmers JJ
    Bioresour Technol; 2016 Jan; 200():699-705. PubMed ID: 26556404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.