BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15107447)

  • 21. Stress-Induced Dinoflagellate Bioluminescence at the Single Cell Level.
    Jalaal M; Schramma N; Dode A; de Maleprade H; Raufaste C; Goldstein RE
    Phys Rev Lett; 2020 Jul; 125(2):028102. PubMed ID: 32701324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of bioluminescent dinoflagellates as an environmental risk assessment tool.
    Lapota D; Osorio AR; Liao C; Bjorndal B
    Mar Pollut Bull; 2007 Dec; 54(12):1857-67. PubMed ID: 17928009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using bioluminescence as a tool for studying diversity in marine zooplankton and dinoflagellates: an initial assessment.
    Letendre F; Blackburn A; Malkiel E; Twardowski M
    PeerJ; 2024; 12():e17516. PubMed ID: 38881863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of predator lipids on dinoflagellate defence mechanisms - increased bioluminescence capacity.
    Lindström J; Grebner W; Rigby K; Selander E
    Sci Rep; 2017 Oct; 7(1):13104. PubMed ID: 29026130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine Bioluminescence: Simulation of Dynamics within a Pump-Through Bathyphotometer.
    Thombs A; Shulman I; Matt S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity.
    Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D
    Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Change in rheotactic behavior patterns of dinoflagellates in response to different microfluidic environments.
    Li SW; Lin PH; Ho TY; Hsieh CH; Sun CL
    Sci Rep; 2021 May; 11(1):11105. PubMed ID: 34045568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
    Salinas M; Ramaswamy S
    J Biomech; 2014 Nov; 47(14):3517-23. PubMed ID: 25262874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Nyctohemeral variations of marine bioluminescence in the Mediterranean and the northeastern Atlantic].
    Geistdoerfer P; Cussatlegras AS
    C R Acad Sci III; 2001 Nov; 324(11):1037-44. PubMed ID: 11725702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum.
    Du Yoo Y; Jeong HJ; Kim MS; Kang NS; Song JY; Shin W; Kim KY; Lee K
    J Eukaryot Microbiol; 2009; 56(5):413-20. PubMed ID: 19737193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum.
    Leitão MA; Cardozo KH; Pinto E; Colepicolo P
    Arch Environ Contam Toxicol; 2003 Jul; 45(1):59-65. PubMed ID: 12948173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadmium and phosphate variability during algal blooms of the dinoflagellate Lingulodinium polyedrum in Todos Santos Bay, Baja California, Mexico.
    Gutierrez-Mejia E; Lares ML; Huerta-Diaz MA; Delgadillo-Hinojosa F
    Sci Total Environ; 2016 Jan; 541():865-876. PubMed ID: 26437355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A type-1 phosphoprotein phosphatase from a dinoflagellate as a possible component of the circadian mechanism.
    Comolli JC; Fagan T; Hastings JW
    J Biol Rhythms; 2003 Oct; 18(5):367-76. PubMed ID: 14582853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors.
    López-Rosales L; García-Camacho F; Sánchez-Mirón A; Contreras-Gómez A; Molina-Grima E
    Bioresour Technol; 2017 Dec; 245(Pt A):250-257. PubMed ID: 28892698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.