BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 15107466)

  • 1. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol.
    Sharma DK; Brown JC; Choudhury A; Peterson TE; Holicky E; Marks DL; Simari R; Parton RG; Pagano RE
    Mol Biol Cell; 2004 Jul; 15(7):3114-22. PubMed ID: 15107466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective caveolin-1-dependent endocytosis of glycosphingolipids.
    Singh RD; Puri V; Valiyaveettil JT; Marks DL; Bittman R; Pagano RE
    Mol Biol Cell; 2003 Aug; 14(8):3254-65. PubMed ID: 12925761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae.
    Damm EM; Pelkmans L; Kartenbeck J; Mezzacasa A; Kurzchalia T; Helenius A
    J Cell Biol; 2005 Jan; 168(3):477-88. PubMed ID: 15668298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis.
    Le Lay S; Hajduch E; Lindsay MR; Le Lièpvre X; Thiele C; Ferré P; Parton RG; Kurzchalia T; Simons K; Dugail I
    Traffic; 2006 May; 7(5):549-61. PubMed ID: 16643278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of caveolar uptake, SV40 infection, and beta1-integrin signaling by a nonnatural glycosphingolipid stereoisomer.
    Singh RD; Holicky EL; Cheng ZJ; Kim SY; Wheatley CL; Marks DL; Bittman R; Pagano RE
    J Cell Biol; 2007 Mar; 176(7):895-901. PubMed ID: 17371832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum.
    Le PU; Guay G; Altschuler Y; Nabi IR
    J Biol Chem; 2002 Feb; 277(5):3371-9. PubMed ID: 11724808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gbetagamma activation of Src induces caveolae-mediated endocytosis in endothelial cells.
    Shajahan AN; Tiruppathi C; Smrcka AV; Malik AB; Minshall RD
    J Biol Chem; 2004 Nov; 279(46):48055-62. PubMed ID: 15345719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking.
    Thomsen P; Roepstorff K; Stahlhut M; van Deurs B
    Mol Biol Cell; 2002 Jan; 13(1):238-50. PubMed ID: 11809836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements.
    Cheng ZJ; Singh RD; Sharma DK; Holicky EL; Hanada K; Marks DL; Pagano RE
    Mol Biol Cell; 2006 Jul; 17(7):3197-210. PubMed ID: 16672382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling.
    Sharma DK; Choudhury A; Singh RD; Wheatley CL; Marks DL; Pagano RE
    J Biol Chem; 2003 Feb; 278(9):7564-72. PubMed ID: 12482757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface.
    Choudhury A; Marks DL; Proctor KM; Gould GW; Pagano RE
    Nat Cell Biol; 2006 Apr; 8(4):317-28. PubMed ID: 16565709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Belt-like localisation of caveolin in deep caveolae and its re-distribution after cholesterol depletion.
    Westermann M; Steiniger F; Richter W
    Histochem Cell Biol; 2005 Jun; 123(6):613-20. PubMed ID: 15889267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton.
    Mundy DI; Machleidt T; Ying YS; Anderson RG; Bloom GS
    J Cell Sci; 2002 Nov; 115(Pt 22):4327-39. PubMed ID: 12376564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gangliosides and beta1-integrin are required for caveolae and membrane domains.
    Singh RD; Marks DL; Holicky EL; Wheatley CL; Kaptzan T; Sato SB; Kobayashi T; Ling K; Pagano RE
    Traffic; 2010 Mar; 11(3):348-60. PubMed ID: 20051050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glycosphingolipid, lactosylceramide, regulates beta1-integrin clustering and endocytosis.
    Sharma DK; Brown JC; Cheng Z; Holicky EL; Marks DL; Pagano RE
    Cancer Res; 2005 Sep; 65(18):8233-41. PubMed ID: 16166299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol substitution increases the structural heterogeneity of caveolae.
    Jansen M; Pietiaïnen VM; Pölönen H; Rasilainen L; Koivusalo M; Ruotsalainen U; Jokitalo E; Ikonen E
    J Biol Chem; 2008 May; 283(21):14610-8. PubMed ID: 18353778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway.
    Minshall RD; Tiruppathi C; Vogel SM; Niles WD; Gilchrist A; Hamm HE; Malik AB
    J Cell Biol; 2000 Sep; 150(5):1057-70. PubMed ID: 10973995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced phosphorylation of caveolar PKC-α limits peptide internalization in lung endothelial cells.
    Hutchinson TE; Zhang J; Xia SL; Kuchibhotla S; Block ER; Patel JM
    Mol Cell Biochem; 2012 Jan; 360(1-2):309-20. PubMed ID: 21948261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters.
    Tagawa A; Mezzacasa A; Hayer A; Longatti A; Pelkmans L; Helenius A
    J Cell Biol; 2005 Aug; 170(5):769-79. PubMed ID: 16129785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.