BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15107480)

  • 1. Monitoring denaturation behaviour and comparative stability of DNA triple helices using oligonucleotide-gold nanoparticle conjugates.
    Murphy D; Eritja R; Redmond G
    Nucleic Acids Res; 2004 Apr; 32(7):e65. PubMed ID: 15107480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA triplex stabilization by a delta-carboline derivative tethered to third strand oligonucleotides.
    Todorović N; Phuong NT; Langer P; Weisz K
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1647-50. PubMed ID: 16377182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies on the formation and thermal stability of DNA triplexes with a benzoannulated delta-carboline-oligonucleotide conjugate.
    Eick A; Xiao Z; Langer P; Weisz K
    Bioorg Med Chem; 2008 Oct; 16(20):9106-12. PubMed ID: 18823783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilities of intrastrand pyrimidine motif DNA and RNA triple helices.
    Hoyne PR; Gacy AM; McMurray CT; Maher LJ
    Nucleic Acids Res; 2000 Feb; 28(3):770-5. PubMed ID: 10637329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel and antiparallel A*A-T intramolecular triple helices.
    Dagneaux C; Gousset H; Shchyolkina AK; Ouali M; Letellier R; Liquier J; Florentiev VL; Taillandier E
    Nucleic Acids Res; 1996 Nov; 24(22):4506-12. PubMed ID: 8948642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel and antiparallel G*G.C base triplets in pur*pur.pyr triple helices formed with (GA) third strands.
    Liquier J; Geinguenaud F; Huynh-Dinh T; Gouyette C; Khomyakova E; Taillandier E
    J Biomol Struct Dyn; 2001 Dec; 19(3):527-34. PubMed ID: 11790150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stability of triplex DNA is affected by the stability of the underlying duplex.
    Rusling DA; Rachwal PA; Brown T; Fox KR
    Biophys Chem; 2009 Dec; 145(2-3):105-10. PubMed ID: 19819611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potent triple helix stabilization by 5',3'-modified triplex-forming oligonucleotides.
    Ben Gaied N; Zhao Z; Gerrard SR; Fox KR; Brown T
    Chembiochem; 2009 Jul; 10(11):1839-51. PubMed ID: 19554592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of parallel and antiparallel oligonucleotide triple helices formation and melting processes by multivariate curve resolution.
    Jaumot J; Aviña A; Eritja R; Tauler R; Gargallo R
    J Biomol Struct Dyn; 2003 Oct; 21(2):267-78. PubMed ID: 12956610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approaches toward recognition of nucleic acid triple helices.
    Arya DP
    Acc Chem Res; 2011 Feb; 44(2):134-46. PubMed ID: 21073199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic and computational studies of DNA triple helices containing a nucleotide or a non-nucleotide linker in the third strand.
    Giancola C; Petraccone L; Pieri M; Barone G
    Biophys Chem; 2001 Dec; 94(1-2):23-31. PubMed ID: 11744187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition.
    Roberts RW; Crothers DM
    Science; 1992 Nov; 258(5087):1463-6. PubMed ID: 1279808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplex Formation by Oligonucleotides Containing Organomercurated Base Moieties.
    Ukale DU; Lönnberg T
    Chembiochem; 2018 May; 19(10):1096-1101. PubMed ID: 29575511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of DNA double and triple helices by conjugation of minor groove binders to oligonucleotides.
    Boutorine AS; Ryabinin VA; Novopashina DS; Venyaminova AG; Hélène C; Sinyakov AS
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1267-72. PubMed ID: 14565396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.