These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 15107495)

  • 1. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational switches involved in orchestrating the successive steps of group I RNA splicing.
    Golden BL; Cech TR
    Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution.
    Waring RB
    Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis and comparative sequence analysis of a base triple joining the two domains of group I ribozymes.
    Tanner MA; Anderson EM; Gutell RR; Cech TR
    RNA; 1997 Sep; 3(9):1037-51. PubMed ID: 9292502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus.
    Tanner M; Cech T
    RNA; 1996 Jan; 2(1):74-83. PubMed ID: 8846298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J; Woodson SA
    J Mol Biol; 1998 Jul; 280(4):597-609. PubMed ID: 9677291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of A-minor tertiary interactions within a bacterial group I intron active site by 3-deazaadenosine interference mapping.
    Soukup JK; Minakawa N; Matsuda A; Strobel SA
    Biochemistry; 2002 Aug; 41(33):10426-38. PubMed ID: 12173929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joining the two domains of a group I ribozyme to form the catalytic core.
    Tanner MA; Cech TR
    Science; 1997 Feb; 275(5301):847-9. PubMed ID: 9012355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal ion binding sites in a group II intron core.
    Sigel RK; Vaidya A; Pyle AM
    Nat Struct Biol; 2000 Dec; 7(12):1111-6. PubMed ID: 11101891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A collapsed non-native RNA folding state.
    Buchmueller KL; Webb AE; Richardson DA; Weeks KM
    Nat Struct Biol; 2000 May; 7(5):362-6. PubMed ID: 10802730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans.
    Zhang Y; Leibowitz MJ
    Nucleic Acids Res; 2001 Jun; 29(12):2644-53. PubMed ID: 11410674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.