These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 15107538)
1. Infection of different cell lines of neural origin with subacute sclerosing panencephalitis (SSPE) virus. Ishida H; Ayata M; Shingai M; Matsunaga I; Seto Y; Katayama Y; Iritani N; Seya T; Yanagi Y; Matsuoka O; Yamano T; Ogura H Microbiol Immunol; 2004; 48(4):277-87. PubMed ID: 15107538 [TBL] [Abstract][Full Text] [Related]
2. Receptor use by vesicular stomatitis virus pseudotypes with glycoproteins of defective variants of measles virus isolated from brains of patients with subacute sclerosing panencephalitis. Shingai M; Ayata M; Ishida H; Matsunaga I; Katayama Y; Seya T; Tatsuo H; Yanagi Y; Ogura H J Gen Virol; 2003 Aug; 84(Pt 8):2133-2143. PubMed ID: 12867645 [TBL] [Abstract][Full Text] [Related]
3. Effect of the alterations in the fusion protein of measles virus isolated from brains of patients with subacute sclerosing panencephalitis on syncytium formation. Ayata M; Shingai M; Ning X; Matsumoto M; Seya T; Otani S; Seto T; Ohgimoto S; Ogura H Virus Res; 2007 Dec; 130(1-2):260-8. PubMed ID: 17825451 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the neuropathogenicity of two SSPE sibling viruses of the Osaka-2 strain isolated with Vero and B95a cells. Ito N; Ayata M; Shingai M; Furukawa K; Seto T; Matsunaga I; Muraoka M; Ogura H J Neurovirol; 2002 Feb; 8(1):6-13. PubMed ID: 11847587 [TBL] [Abstract][Full Text] [Related]
5. An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. McQuaid S; Cosby SL Lab Invest; 2002 Apr; 82(4):403-9. PubMed ID: 11950898 [TBL] [Abstract][Full Text] [Related]
6. Hemadsorption expressed by cloned H genes from subacute sclerosing panencephalitis (SSPE) viruses and their possible progenitor measles viruses isolated in Osaka, Japan. Furukawa K; Ayata M; Kimura M; Seto T; Matsunaga I; Murata R; Yamano T; Ogura H Microbiol Immunol; 2001; 45(1):59-68. PubMed ID: 11270608 [TBL] [Abstract][Full Text] [Related]
7. Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain. Angius F; Smuts H; Rybkina K; Stelitano D; Eley B; Wilmshurst J; Ferren M; Lalande A; Mathieu C; Moscona A; Horvat B; Hashiguchi T; Porotto M; Hardie D J Virol; 2019 Feb; 93(4):. PubMed ID: 30487282 [TBL] [Abstract][Full Text] [Related]
8. Amino acid substitutions in the heptad repeat A and C regions of the F protein responsible for neurovirulence of measles virus Osaka-1 strain from a patient with subacute sclerosing panencephalitis. Ayata M; Tanaka M; Kameoka K; Kuwamura M; Takeuchi K; Takeda M; Kanou K; Ogura H Virology; 2016 Jan; 487():141-9. PubMed ID: 26524513 [TBL] [Abstract][Full Text] [Related]
9. Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Patterson JB; Cornu TI; Redwine J; Dales S; Lewicki H; Holz A; Thomas D; Billeter MA; Oldstone MB Virology; 2001 Dec; 291(2):215-25. PubMed ID: 11878891 [TBL] [Abstract][Full Text] [Related]
10. Mutant fusion proteins with enhanced fusion activity promote measles virus spread in human neuronal cells and brains of suckling hamsters. Watanabe S; Shirogane Y; Suzuki SO; Ikegame S; Koga R; Yanagi Y J Virol; 2013 Mar; 87(5):2648-59. PubMed ID: 23255801 [TBL] [Abstract][Full Text] [Related]
11. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. Sato Y; Watanabe S; Fukuda Y; Hashiguchi T; Yanagi Y; Ohno S J Virol; 2018 Mar; 92(6):. PubMed ID: 29298883 [TBL] [Abstract][Full Text] [Related]
12. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo. Watanabe M; Hashimoto K; Abe Y; Kodama EN; Nabika R; Oishi S; Ohara S; Sato M; Kawasaki Y; Fujii N; Hosoya M PLoS One; 2016; 11(9):e0162823. PubMed ID: 27612283 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of measles virus entry and dissemination through different receptors. Schneider U; von Messling V; Devaux P; Cattaneo R J Virol; 2002 Aug; 76(15):7460-7. PubMed ID: 12097558 [TBL] [Abstract][Full Text] [Related]
15. SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. Hashimoto K; Ono N; Tatsuo H; Minagawa H; Takeda M; Takeuchi K; Yanagi Y J Virol; 2002 Jul; 76(13):6743-9. PubMed ID: 12050387 [TBL] [Abstract][Full Text] [Related]
16. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity. Satoh Y; Higuchi K; Nishikawa D; Wakimoto H; Konami M; Sakamoto K; Kitagawa Y; Gotoh B; Jiang DP; Hotta H; Itoh M J Gen Virol; 2021 Oct; 102(10):. PubMed ID: 34643483 [TBL] [Abstract][Full Text] [Related]
17. Nucleotide sequences of the matrix protein gene of subacute sclerosing panencephalitis viruses compared with local contemporary isolates from patients with acute measles. Ayata M; Kimoto T; Hayashi K; Seto T; Murata R; Ogura H Virus Res; 1998 Mar; 54(1):107-15. PubMed ID: 9660076 [TBL] [Abstract][Full Text] [Related]
18. Generation of recombinant adenovirus expressing siRNA against the L mRNA of measles virus and subacute sclerosing panencephalitis virus. Otaki M; Jiang DP; Sasayama M; Nagano-Fujii M; Hotta H Microbiol Immunol; 2007; 51(10):985-91. PubMed ID: 17951988 [TBL] [Abstract][Full Text] [Related]