These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 15107825)
1. BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II. Cabart P; Chew HK; Murphy S Oncogene; 2004 Jul; 23(31):5316-29. PubMed ID: 15107825 [TBL] [Abstract][Full Text] [Related]
2. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
3. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. Michels AA; Fraldi A; Li Q; Adamson TE; Bonnet F; Nguyen VT; Sedore SC; Price JP; Price DH; Lania L; Bensaude O EMBO J; 2004 Jul; 23(13):2608-19. PubMed ID: 15201869 [TBL] [Abstract][Full Text] [Related]
4. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Hoque M; Young TM; Lee CG; Serrero G; Mathews MB; Pe'ery T Mol Cell Biol; 2003 Mar; 23(5):1688-702. PubMed ID: 12588988 [TBL] [Abstract][Full Text] [Related]
5. BRCA1 associates with processive RNA polymerase II. Krum SA; Miranda GA; Lin C; Lane TF J Biol Chem; 2003 Dec; 278(52):52012-20. PubMed ID: 14506230 [TBL] [Abstract][Full Text] [Related]
6. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Brès V; Gomes N; Pickle L; Jones KA Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409 [TBL] [Abstract][Full Text] [Related]
7. Interplay between 7SK snRNA and oppositely charged regions in HEXIM1 direct the inhibition of P-TEFb. Barboric M; Kohoutek J; Price JP; Blazek D; Price DH; Peterlin BM EMBO J; 2005 Dec; 24(24):4291-303. PubMed ID: 16362050 [TBL] [Abstract][Full Text] [Related]
8. Techniques to analyze the HIV-1 Tat and TAR RNA-dependent recruitment and activation of the cyclin T1: CDK9 (P-TEFb) transcription elongation factor. Gomes N; Garber ME; Jones KA Methods Enzymol; 2003; 371():324-36. PubMed ID: 14712711 [No Abstract] [Full Text] [Related]
9. Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase II transcription. Gurumurthy M; Tan CH; Ng R; Zeiger L; Lau J; Lee J; Dey A; Philp R; Li Q; Lim TM; Price DH; Lane DP; Chao SH J Mol Biol; 2008 Apr; 378(2):302-17. PubMed ID: 18371977 [TBL] [Abstract][Full Text] [Related]
10. The positive transcription elongation factor b is an essential cofactor for the activation of transcription by myocyte enhancer factor 2. Nojima M; Huang Y; Tyagi M; Kao HY; Fujinaga K J Mol Biol; 2008 Oct; 382(2):275-87. PubMed ID: 18662700 [TBL] [Abstract][Full Text] [Related]
11. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195 [TBL] [Abstract][Full Text] [Related]
12. Hexim1 sequesters positive transcription elongation factor b from the class II transactivator on MHC class II promoters. Kohoutek J; Blazek D; Peterlin BM Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17349-54. PubMed ID: 17088550 [TBL] [Abstract][Full Text] [Related]
13. Positive transcription elongation factor b (P-TEFb) contributes to dengue virus-stimulated induction of interleukin-8 (IL-8). Li LL; Hu ST; Wang SH; Lee HH; Wang YT; Ping YH Cell Microbiol; 2010 Nov; 12(11):1589-603. PubMed ID: 20618343 [TBL] [Abstract][Full Text] [Related]
14. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding. Egloff S; Van Herreweghe E; Kiss T Mol Cell Biol; 2006 Jan; 26(2):630-42. PubMed ID: 16382153 [TBL] [Abstract][Full Text] [Related]
15. Stimulatory effect of splicing factors on transcriptional elongation. Fong YW; Zhou Q Nature; 2001 Dec 20-27; 414(6866):929-33. PubMed ID: 11780068 [TBL] [Abstract][Full Text] [Related]
16. Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. Tan W; Zheng L; Lee WH; Boyer TG J Biol Chem; 2004 Feb; 279(8):6576-87. PubMed ID: 14660588 [TBL] [Abstract][Full Text] [Related]
17. Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. Schulte A; Czudnochowski N; Barboric M; Schönichen A; Blazek D; Peterlin BM; Geyer M J Biol Chem; 2005 Jul; 280(26):24968-77. PubMed ID: 15855166 [TBL] [Abstract][Full Text] [Related]
18. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Garriga J; Graña X Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198 [TBL] [Abstract][Full Text] [Related]
19. P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. Lin X; Taube R; Fujinaga K; Peterlin BM J Biol Chem; 2002 May; 277(19):16873-8. PubMed ID: 11884399 [TBL] [Abstract][Full Text] [Related]
20. Walleye dermal sarcoma virus cyclin interacts with components of the mediator complex and the RNA polymerase II holoenzyme. Rovnak J; Quackenbush SL J Virol; 2002 Aug; 76(16):8031-9. PubMed ID: 12134008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]