These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15108033)

  • 21. The Chlamydomonas hatching enzyme, sporangin, is expressed in specific phases of the cell cycle and is localized to the flagella of daughter cells within the sporangial cell wall.
    Kubo T; Kaida S; Abe J; Saito T; Fukuzawa H; Matsuda Y
    Plant Cell Physiol; 2009 Mar; 50(3):572-83. PubMed ID: 19179351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fibrous matrix component of cell wall in the giant-celled green alga Valonia utricularis observed by atomic force microscopy in liquid.
    Mine I; Sekida S
    Protoplasma; 2018 Sep; 255(5):1575-1579. PubMed ID: 29675564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross wall synthesis and the arrangement of the wall polymers in the cell wall of Staphylococcus spp.
    Amako K; Umeda A
    Microbiol Immunol; 1984; 28(12):1293-301. PubMed ID: 6533440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris.
    Chen Z; Zhang J; Lei X; Zhang B; Cai G; Zhang H; Li Y; Zheng W; Tian Y; Xu H; Zheng T
    Bioresour Technol; 2014 Oct; 169():784-788. PubMed ID: 25086475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of antibiotic AL-87 on the growth and ultrastructure of staphylococci].
    Churkina LN; Stepaniuk VV; Kiprianova EA; Garagulia AD; Smirnov VV
    Antibiot Med Biotekhnol; 1986 May; 31(5):362-5. PubMed ID: 3729323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris.
    Hadjoudja S; Deluchat V; Baudu M
    J Colloid Interface Sci; 2010 Feb; 342(2):293-9. PubMed ID: 20004408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-wall-bound lytic activity in Chlorella fusca: function and characterization of an endo-mannanase.
    Loos E; Meindl D
    Planta; 1985 Dec; 166(4):557-62. PubMed ID: 24241623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrastructure of the cell wall and cell division of unicellular blue-green algae.
    Allen MM
    J Bacteriol; 1968 Sep; 96(3):842-52. PubMed ID: 5732513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix.
    Weiss TL; Roth R; Goodson C; Vitha S; Black I; Azadi P; Rusch J; Holzenburg A; Devarenne TP; Goodenough U
    Eukaryot Cell; 2012 Dec; 11(12):1424-40. PubMed ID: 22941913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris.
    Ge F; Wu X; Wang N; Zhu R; Wang T; Xu Y
    J Hazard Mater; 2011 May; 189(1-2):540-5. PubMed ID: 21435781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus.
    Matias VR; Beveridge TJ
    J Bacteriol; 2006 Feb; 188(3):1011-21. PubMed ID: 16428405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    Protist; 2009 Feb; 160(1):65-74. PubMed ID: 18715827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.
    Liu ZY; Wang GC; Zhou BC
    Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose synthesis during cell plate assembly.
    Chen HW; Persson S; Grebe M; McFarlane HE
    Physiol Plant; 2018 Sep; 164(1):17-26. PubMed ID: 29418000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.
    Mahdy A; Mendez L; Blanco S; Ballesteros M; González-Fernández C
    Bioresour Technol; 2014 Nov; 171():421-7. PubMed ID: 25226058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis.
    Refrégier G; Pelletier S; Jaillard D; Höfte H
    Plant Physiol; 2004 Jun; 135(2):959-68. PubMed ID: 15181211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper.
    Gritsch CS; Murphy RJ
    Ann Bot; 2005 Mar; 95(4):619-29. PubMed ID: 15665037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size.
    Ouyang S; Hu X; Zhou Q
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18104-12. PubMed ID: 26221973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiplication of the dictyosome during the formation of autospores in the green alga Chlorococcum infusionum.
    Chida Y; Noguchi T
    Biol Cell; 1989; 65(2):189-94. PubMed ID: 2736332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new arabinomannan from the cell wall of the chlorococcal algae Chlorella vulgaris.
    Pieper S; Unterieser I; Mann F; Mischnick P
    Carbohydr Res; 2012 May; 352():166-76. PubMed ID: 22425444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.