These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 15108351)
21. Enhanced expression of cyclooxygenase-2 and prostaglandin E2 in response to endotoxin after trauma is dependent on MAPK and NF-kappaB mechanisms. Yan Z; Stapleton PP; Freeman TA; Fuortes M; Daly JM Cell Immunol; 2004; 232(1-2):116-26. PubMed ID: 15890324 [TBL] [Abstract][Full Text] [Related]
22. Leptospiral membrane proteins stimulate pro-inflammatory chemokines secretion by renal tubule epithelial cells through toll-like receptor 2 and p38 mitogen activated protein kinase. Hung CC; Chang CT; Tian YC; Wu MS; Yu CC; Pan MJ; Vandewalle A; Yang CW Nephrol Dial Transplant; 2006 Apr; 21(4):898-910. PubMed ID: 16339163 [TBL] [Abstract][Full Text] [Related]
23. Transcriptional regulation of IL-8 by Staphylococcus aureus in human conjunctival cells involves activation of AP-1. Venza I; Cucinotta M; Caristi S; Mancuso G; Teti D Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):270-6. PubMed ID: 17197543 [TBL] [Abstract][Full Text] [Related]
24. Receptor activator of nuclear factor-kappaB ligand-induced mouse osteoclast differentiation is associated with switching between NADPH oxidase homologues. Sasaki H; Yamamoto H; Tominaga K; Masuda K; Kawai T; Teshima-Kondo S; Matsuno K; Yabe-Nishimura C; Rokutan K Free Radic Biol Med; 2009 Jul; 47(2):189-99. PubMed ID: 19409483 [TBL] [Abstract][Full Text] [Related]
25. Paeonol inhibits RANKL-induced osteoclastogenesis by inhibiting ERK, p38 and NF-kappaB pathway. Tsai HY; Lin HY; Fong YC; Wu JB; Chen YF; Tsuzuki M; Tang CH Eur J Pharmacol; 2008 Jun; 588(1):124-33. PubMed ID: 18495114 [TBL] [Abstract][Full Text] [Related]
26. The regulation of NADPH oxidase and its association with cell proliferation in human lens epithelial cells. Wang Y; Lou MF Invest Ophthalmol Vis Sci; 2009 May; 50(5):2291-300. PubMed ID: 19136702 [TBL] [Abstract][Full Text] [Related]
27. Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2. Nishida S; Tsubaki M; Hoshino M; Namimatsu A; Uji H; Yoshioka S; Tanimori Y; Yanae M; Iwaki M; Irimajiri K Biochem Biophys Res Commun; 2005 Mar; 328(1):91-7. PubMed ID: 15670755 [TBL] [Abstract][Full Text] [Related]
28. NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Yamaura M; Mitsushita J; Furuta S; Kiniwa Y; Ashida A; Goto Y; Shang WH; Kubodera M; Kato M; Takata M; Saida T; Kamata T Cancer Res; 2009 Mar; 69(6):2647-54. PubMed ID: 19276355 [TBL] [Abstract][Full Text] [Related]
29. Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-{beta}-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Caja L; Sancho P; Bertran E; Iglesias-Serret D; Gil J; Fabregat I Cancer Res; 2009 Oct; 69(19):7595-602. PubMed ID: 19773433 [TBL] [Abstract][Full Text] [Related]
30. Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. Darden AG; Ries WL; Wolf WC; Rodriguiz RM; Key LL J Bone Miner Res; 1996 May; 11(5):671-5. PubMed ID: 9157782 [TBL] [Abstract][Full Text] [Related]
31. Superoxide generation and tyrosine kinase. Yang S; Hardaway M; Sun G; Ries WL; Key LL Biochem Cell Biol; 2000; 78(1):11-7. PubMed ID: 10735559 [TBL] [Abstract][Full Text] [Related]
32. Nox4 is a major source of superoxide production in human brain pericytes. Kuroda J; Ago T; Nishimura A; Nakamura K; Matsuo R; Wakisaka Y; Kamouchi M; Kitazono T J Vasc Res; 2014; 51(6):429-38. PubMed ID: 25612841 [TBL] [Abstract][Full Text] [Related]
33. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Fu Y; Zhang Y; Wang Z; Wang L; Wei X; Zhang B; Wen Z; Fang H; Pang Q; Yi F Am J Nephrol; 2010; 32(6):581-9. PubMed ID: 21071935 [TBL] [Abstract][Full Text] [Related]
34. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Dzubanova M; Bond JM; Craige SM; Tencerova M Front Cell Dev Biol; 2024; 12():1432668. PubMed ID: 39188529 [TBL] [Abstract][Full Text] [Related]
35. NADPH Oxidase 3: Beyond the Inner Ear. Herb M Antioxidants (Basel); 2024 Feb; 13(2):. PubMed ID: 38397817 [TBL] [Abstract][Full Text] [Related]
36. Nox4 as a novel therapeutic target for diabetic vascular complications. Wang D; Li J; Luo G; Zhou J; Wang N; Wang S; Zhao R; Cao X; Ma Y; Liu G; Hao L Redox Biol; 2023 Aug; 64():102781. PubMed ID: 37321060 [TBL] [Abstract][Full Text] [Related]
38. Sexually Dimorphic Increases in Bone Mass Following Tissue-specific Overexpression of Runx1 in Osteoclast Precursors. Díaz-Hernández ME; Kinter CW; Watson SR; Mella-Velazquez G; Kaiser J; Liu G; Khan NM; Roberts JL; Lorenzo J; Drissi H Endocrinology; 2022 Sep; 163(9):. PubMed ID: 35880727 [TBL] [Abstract][Full Text] [Related]
39. Osteomyelitis, Oxidative Stress and Related Biomarkers. Massaccesi L; Galliera E; Pellegrini A; Banfi G; Corsi Romanelli MM Antioxidants (Basel); 2022 May; 11(6):. PubMed ID: 35739958 [TBL] [Abstract][Full Text] [Related]
40. NOX4 blockade suppresses titanium nanoparticle-induced bone destruction via activation of the Nrf2 signaling pathway. Wang W; Liang X; Liu X; Bai J; Zhang W; Li W; Wang T; Li M; Wu Z; Chen L; Yang H; Gu Y; Tao Y; Zhou J; Wang H; Geng D J Nanobiotechnology; 2022 May; 20(1):241. PubMed ID: 35606794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]