BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15108815)

  • 1. A mode of arthropod brain evolution suggested by Drosophila commissure development.
    Page DT
    Evol Dev; 2004; 6(1):25-31. PubMed ID: 15108815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development of Drosophila.
    Meier S; Sprecher SG; Reichert H; Hirth F
    Mech Dev; 2006 Jan; 123(1):76-83. PubMed ID: 16326080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy.
    Hartenstein V; Omoto JJ; Ngo KT; Wong D; Kuert PA; Reichert H; Lovick JK; Younossi-Hartenstein A
    J Comp Neurol; 2018 Jan; 526(1):6-32. PubMed ID: 28730682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila.
    Sprecher SG; Urbach R; Technau GM; Rijli FM; Reichert H; Hirth F
    Development; 2006 Nov; 133(21):4331-9. PubMed ID: 17038518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commissure formation in the embryonic insect brain.
    Boyan G; Reichert H; Hirth F
    Arthropod Struct Dev; 2003 Aug; 32(1):61-77. PubMed ID: 18088996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila.
    Hirth F; Loop T; Egger B; Miller DF; Kaufman TC; Reichert H
    Development; 2001 Dec; 128(23):4781-8. PubMed ID: 11731458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomy of neurons crossing the tritocerebral commissures of the cockroach Periplaneta americana (Blattaria).
    Gundel M; Penzlin H
    J Morphol; 1995 Feb; 223(2):225-42. PubMed ID: 7877184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment.
    Maxmen A; Browne WE; Martindale MQ; Giribet G
    Nature; 2005 Oct; 437(7062):1144-8. PubMed ID: 16237442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments.
    Kendroud S; Bohra AA; Kuert PA; Nguyen B; Guillermin O; Sprecher SG; Reichert H; VijayRaghavan K; Hartenstein V
    J Comp Neurol; 2018 Jan; 526(1):33-58. PubMed ID: 28875566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila.
    Hirth F; Therianos S; Loop T; Gehring WJ; Reichert H; Furukubo-Tokunaga K
    Neuron; 1995 Oct; 15(4):769-78. PubMed ID: 7576627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The jing gene is required for embryonic brain development in Drosophila [corrected].
    Sedaghat Y; Sonnenfeld M
    Dev Genes Evol; 2002 Jul; 212(6):277-87. PubMed ID: 12111212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods.
    Mayer G; Whitington PM; Sunnucks P; Pflüger HJ
    BMC Evol Biol; 2010 Aug; 10():255. PubMed ID: 20727203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architecture of the nervous system in mystacocarida (Arthropoda, crustacea)--an immunohistochemical study and 3D reconstruction.
    Brenneis G; Richter S
    J Morphol; 2010 Feb; 271(2):169-89. PubMed ID: 19708064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.
    Janssen R
    Dev Genes Evol; 2012 Sep; 222(5):299-309. PubMed ID: 22903234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the segmental identity of post-oral commissures and pharyngeal nerves in Onychophora based on retrograde fills.
    Martin C; Mayer G
    BMC Neurosci; 2015 Aug; 16():53. PubMed ID: 26303946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ventral nerve cord in Cephalocarida (Crustacea): new insights into the ground pattern of Tetraconata.
    Stegner ME; Brenneis G; Richter S
    J Morphol; 2014 Mar; 275(3):269-94. PubMed ID: 24186353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The midline glial cells are required for regionalization of commissural axons in the embryonic CNS of Drosophila.
    Stollewerk A; Klämbt C
    Dev Genes Evol; 1997 Dec; 207(6):402-409. PubMed ID: 27747439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and molecular data argue for the labrum being non-apical, articulated, and the appendage of the intercalary segment in the locust.
    Boyan GS; Williams JL; Posser S; Bräunig P
    Arthropod Struct Dev; 2002 Sep; 31(1):65-76. PubMed ID: 18088971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regressive evolution of the arthropod tritocerebral segment linked to functional divergence of the Hox gene labial.
    Pechmann M; Schwager EE; Turetzek N; Prpic NM
    Proc Biol Sci; 2015 Sep; 282(1814):. PubMed ID: 26311666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic development of the Drosophila brain. II. Pattern of glial cells.
    Hartenstein V; Nassif C; Lekven A
    J Comp Neurol; 1998 Dec; 402(1):32-47. PubMed ID: 9831044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.