These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15108815)

  • 41. The NK-2 homeobox gene scarecrow (scro) is expressed in pharynx, ventral nerve cord and brain of Drosophila embryos.
    Zaffran S; Das G; Frasch M
    Mech Dev; 2000 Jun; 94(1-2):237-41. PubMed ID: 10842079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene expression suggests double-segmental and single-segmental patterning mechanisms during posterior segment addition in the beetle Tribolium castaneum.
    Janssen R
    Int J Dev Biol; 2014; 58(5):343-7. PubMed ID: 25354454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nervous system development in the fairy shrimp Branchinella sp. (Crustacea: Branchiopoda: Anostraca): Insights into the development and evolution of the branchiopod brain and its sensory organs.
    Frase T; Richter S
    J Morphol; 2016 Nov; 277(11):1423-1446. PubMed ID: 27492810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider.
    Jager M; Murienne J; Clabaut C; Deutsch J; Le Guyader H; Manuel M
    Nature; 2006 May; 441(7092):506-8. PubMed ID: 16724066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms.
    Stahi R; Chipman AD
    Proc Biol Sci; 2016 Oct; 283(1840):. PubMed ID: 27708151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The tritocerebral commissure 'dwarf' (TCD): a major GABA-immunoreactive descending interneuron in the locust.
    Tyrer NM; Pozza MF; Humbel U; Peters BH; Bacon JP
    J Comp Physiol A; 1988 Dec; 164(2):141-50. PubMed ID: 3244124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids.
    Sharma PP; Tarazona OA; Lopez DH; Schwager EE; Cohn MJ; Wheeler WC; Extavour CG
    Proc Biol Sci; 2015 Jun; 282(1808):20150698. PubMed ID: 25948691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-minded and the evolution of the ventral midline in arthropods.
    Linne V; Eriksson BJ; Stollewerk A
    Dev Biol; 2012 Apr; 364(1):66-76. PubMed ID: 22306923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FMRFamide-like immunocytochemistry in the brain and subesophageal ganglion of Triatoma infestans (Insecta: Heteroptera). Coexpression with beta-pigment-dispersing hormone and small cardioactive peptide B.
    Settembrini BP; Villar MJ
    Cell Tissue Res; 2005 Aug; 321(2):299-310. PubMed ID: 15947966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and function of embryonic central nervous system glial cells in Drosophila.
    Klämbt C; Hummel T; Menne T; Sadlowski E; Scholz H; Stollewerk A
    Dev Genet; 1996; 18(1):40-9. PubMed ID: 8742833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Embryonic development of the Drosophila brain. I. Pattern of pioneer tracts.
    Nassif C; Noveen A; Hartenstein V
    J Comp Neurol; 1998 Dec; 402(1):10-31. PubMed ID: 9831043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolutionary conservation and divergence of the segmentation process in arthropods.
    Damen WG
    Dev Dyn; 2007 Jun; 236(6):1379-91. PubMed ID: 17440988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Homeotic genes influence the axonal pathway of a Drosophila embryonic sensory neuron.
    Merritt DJ; Whitington PM
    Int J Dev Biol; 2002; 46(4):633-8. PubMed ID: 12141451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods.
    Mayer G; Harzsch S
    BMC Evol Biol; 2007 Jul; 7():118. PubMed ID: 17629937
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Segment-specific requirements for dorsoventral patterning genes during early brain development in Drosophila.
    Urbach R; Volland D; Seibert J; Technau GM
    Development; 2006 Nov; 133(21):4315-30. PubMed ID: 17038517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity and evolution of the insect ventral nerve cord.
    Niven JE; Graham CM; Burrows M
    Annu Rev Entomol; 2008; 53():253-71. PubMed ID: 17803455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila.
    Hirth F; Kammermeier L; Frei E; Walldorf U; Noll M; Reichert H
    Development; 2003 Jun; 130(11):2365-73. PubMed ID: 12702651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuroarchitecture of the tritocerebrum of Drosophila melanogaster.
    Rajashekhar KP; Singh RN
    J Comp Neurol; 1994 Nov; 349(4):633-45. PubMed ID: 7860793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda.
    Mayer G; Whitington PM
    Dev Biol; 2009 Nov; 335(1):263-75. PubMed ID: 19683520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence.
    Scholtz G; Edgecombe GD
    Dev Genes Evol; 2006; 216(7-8):395-415. PubMed ID: 16816969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.