These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15108858)

  • 1. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment.
    Wolters A; Steffens M
    Environ Sci Technol; 2005 Aug; 39(16):6071-8. PubMed ID: 16173565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber.
    Wolters A; Kromer T; Linnemann V; Schäffer A; Vereecken H
    Environ Toxicol Chem; 2003 Apr; 22(4):791-7. PubMed ID: 12685714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodegradation of pesticides on plant and soil surfaces.
    Katagi T
    Rev Environ Contam Toxicol; 2004; 182():1-189. PubMed ID: 15217019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental fate of methyl bromide as a soil fumigant.
    Yates SR; Gan J; Papiernik SK
    Rev Environ Contam Toxicol; 2003; 177():45-122. PubMed ID: 12666818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pesticide volatilization from soil: lysimeter measurements versus predictions of European registration models.
    Wolters A; Linnemann V; Herbst M; Klein M; Schäffer A; Vereecken H
    J Environ Qual; 2003; 32(4):1183-93. PubMed ID: 12931871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: implications for cold environments.
    Weber J; Kurková R; Klánová J; Klán P; Halsall CJ
    Environ Pollut; 2009 Dec; 157(12):3308-13. PubMed ID: 19540637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.
    Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E
    Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of indirect photochemical degradation in the environmental fate of pesticides: a review.
    Remucal CK
    Environ Sci Process Impacts; 2014 Apr; 16(4):628-53. PubMed ID: 24419250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pesticide volatilization from plants: improvement of the PEC model PELMO based on a boundary-layer concept.
    Wolters A; Leistra M; Linnemann V; Klein M; Schäffer A; Vereecken H
    Environ Sci Technol; 2004 May; 38(10):2885-93. PubMed ID: 15212264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the tropospheric transport and fate of agricultural pesticides.
    Hebert VR; Miller GC
    Rev Environ Contam Toxicol; 2004; 181():1-36. PubMed ID: 14738196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of mixed pesticides from drinking water system by photodegradation using suspended and immobilized TiO2.
    Senthilnathan J; Philip L
    J Environ Sci Health B; 2009 Mar; 44(3):262-70. PubMed ID: 19280479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting and measuring environmental concentration of pesticides in air after soil application.
    Ferrari F; Trevisan M; Capri E
    J Environ Qual; 2003; 32(5):1623-33. PubMed ID: 14535302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodegradation of organophosphorus pesticides in honey medium.
    Yuan Z; Yao J; Liu H; Han J; Trebše P
    Ecotoxicol Environ Saf; 2014 Oct; 108():84-8. PubMed ID: 25042249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved description of pesticide volatilization: refinement of the pesticide leaching model (PELMO).
    Wolters A; Klein M; Vereecken H
    J Environ Qual; 2004; 33(5):1629-37. PubMed ID: 15356222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Test system to establish mass balances for 14C-labeled substances in soil-plant-atmosphere systems under field conditions.
    Schroll R; Kühn S
    Environ Sci Technol; 2004 Mar; 38(5):1537-44. PubMed ID: 15046357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatilization of parathion and chlorothalonil from a potato crop simulated by the PEARL model.
    Leistra M; van den Berg F
    Environ Sci Technol; 2007 Apr; 41(7):2243-8. PubMed ID: 17438770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental fate of trifluralin.
    Grover R; Wolt JD; Cessna AJ; Schiefer HB
    Rev Environ Contam Toxicol; 1997; 153():1-64. PubMed ID: 9380893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical nitro-nitrite rearrangement in methyl parathion decay under tropical conditions.
    Araújo TM; Canela MC; Miranda PC
    J Environ Sci Health B; 2013; 48(4):251-9. PubMed ID: 23374042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.