These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1510886)

  • 1. Simultaneous estimation of blood flow rate and tissue temperature.
    Kato K; Matsuda J; Yamashita T; Tanaka R
    Front Med Biol Eng; 1992; 4(2):135-43. PubMed ID: 1510886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical calculations of the temperature distribution in realistic cross sections of the human body.
    Iskander MF; Khoshdel-Milani O
    Int J Radiat Oncol Biol Phys; 1984 Oct; 10(10):1907-12. PubMed ID: 6490421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurements of local tissue temperature and blood perfusion rate in the canine prostate during radio frequency thermal therapy.
    Zhu L; Pang L; Xu LX
    Biomech Model Mechanobiol; 2005 Aug; 4(1):1-9. PubMed ID: 15940507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of estimating the temperature distribution in a tumor heated by a waveguide applicator.
    Rine GP; Dewhirst MW; Cobb ED; Clegg ST; Coleman EN; Samulski TV; Wallen CA
    Int J Radiat Oncol Biol Phys; 1992; 23(5):1009-19. PubMed ID: 1639634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse techniques in hyperthermia: a sensitivity study.
    Clegg ST; Samulski TV; Murphy KA; Rosner GL; Dewhirst MW
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):373-82. PubMed ID: 8063303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient finite element analysis of thermal methods used to estimate SAR and blood flow in homogeneously and nonhomogeneously perfused tumour models.
    Wong TZ; Mechling JA; Jones EL; Strohbehn JW
    Int J Hyperthermia; 1988; 4(6):571-92. PubMed ID: 3171254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective estimation and computer control of minimum tumour temperature during conductive interstitial hyperthermia.
    DeFord JA; Babbs CF; Patel UH; Bleyer MW; Marchosky JA; Moran CJ
    Int J Hyperthermia; 1991; 7(3):441-53. PubMed ID: 1919140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive thermometry with multi-frequency microwave radiometry.
    Mizushina S; Shimizu T; Sugiura T
    Front Med Biol Eng; 1992; 4(2):129-33. PubMed ID: 1510885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of thermal ablation in tissue surrounding a large vessel.
    Chen X; Saidel GM
    J Biomech Eng; 2009 Jan; 131(1):011001. PubMed ID: 19045917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of thermal behavior of a biological tissue: an equivalence of Pennes bioheat equation and Wulff continuum model.
    Das K; Mishra SC
    J Therm Biol; 2014 Oct; 45():103-9. PubMed ID: 25436958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance temperature imaging-based quantification of blood flow-related energy losses.
    Dillon C; Roemer R; Payne A
    NMR Biomed; 2015 Jul; 28(7):840-51. PubMed ID: 25973583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planning of hyperthermic treatment for malignant glioma using computer simulation.
    Uzuka T; Tanaka R; Takahashi H; Kakinuma K; Matsuda J; Kato K
    Int J Hyperthermia; 2001; 17(2):114-22. PubMed ID: 11252356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation.
    Welp C; Siebers S; Ermert H; Werner J
    Biomed Tech (Berl); 2006 Dec; 51(5-6):337-46. PubMed ID: 17155870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Theoretical simulation of temperature distribution in electromagnetic hyperthermia of tumors].
    Kudriavtsev IuS; Kolmykov AV
    Med Radiol (Mosk); 1990 Feb; 35(2):3-9. PubMed ID: 2314203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of closed-loop feedback control of minimum temperatures in human intracranial tumours treated with interstitial hyperthermia.
    DeFord JA; Babbs CF; Patel UH; Fearnot NE; Marchosky JA; Moran CJ
    Med Biol Eng Comput; 1991 Mar; 29(2):197-206. PubMed ID: 1857126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional hyperthermia of the abdomen, a pilot study towards the treatment of peritoneal carcinomatosis.
    Beck M; Ghadjar P; Weihrauch M; Burock S; Budach V; Nadobny J; Sehouli J; Wust P
    Radiat Oncol; 2015 Jul; 10():157. PubMed ID: 26223271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.