These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15108882)

  • 21. Ultrastructural observations on the development of triamcinolone-induced cleft palate in hamsters.
    Shah RM
    Invest Cell Pathol; 1980; 3(3):281-94. PubMed ID: 7429884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TGF-beta3-induced palatogenesis requires matrix metalloproteinases.
    Blavier L; Lazaryev A; Groffen J; Heisterkamp N; DeClerck YA; Kaartinen V
    Mol Biol Cell; 2001 May; 12(5):1457-66. PubMed ID: 11359935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medial edge epithelial cell fate during palatal fusion.
    Martínez-Alvarez C; Tudela C; Pérez-Miguelsanz J; O'Kane S; Puerta J; Ferguson MW
    Dev Biol; 2000 Apr; 220(2):343-57. PubMed ID: 10753521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesenchymal changes associated with retinoic acid induced cleft palate in CD-1 mice.
    Degitz SJ; Francis BM; Foley GL
    J Craniofac Genet Dev Biol; 1998; 18(2):88-99. PubMed ID: 9672841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion.
    Jin JZ; Ding J
    Development; 2006 Sep; 133(17):3341-7. PubMed ID: 16887819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of the Epithelial Cell Behavior in the Nasal Septum During Primary Palate Closure in Mice.
    Yamamoto S; Kurosaka H; Miura J; Aoyama G; Sarper SE; Oka A; Inubushi T; Nakatsugawa K; Usami Y; Toyosawa S; Yamashiro T
    Front Physiol; 2020; 11():538835. PubMed ID: 33123019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alteration of apoptosis in cleft palate formation and ectomesenchymal stem cells influenced by retinoic acid.
    Suwa F; Jin Y; Lu H; Li X; Tipoe GL; Lau TY; Tamada Y; Kuroki K; Fang YR
    Okajimas Folia Anat Jpn; 2001 Dec; 78(5):179-86. PubMed ID: 11915360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apoptosis and heterophagy of medial edge epithelial cells of the secondary palatine shelves during fusion.
    Taniguchi K; Sato N; Uchiyama Y
    Arch Histol Cytol; 1995 Jun; 58(2):191-203. PubMed ID: 7576871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Influence of dexamethasone on fusion of embryonic palatal medial edge epithelium in mouse palatal shelves in vitro].
    Huang L; Shi B; Sun JH; Wang Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2005 Apr; 23(2):103-5. PubMed ID: 15952616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apoptotic epithelial cell death: a prerequisite for palatal fusion. An in vivo study in rabbits.
    Holtgrave EA; Stoltenburg-Didinger G
    J Craniomaxillofac Surg; 2002 Dec; 30(6):329-36. PubMed ID: 12425986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Runx1 is involved in the fusion of the primary and the secondary palatal shelves.
    Charoenchaikorn K; Yokomizo T; Rice DP; Honjo T; Matsuzaki K; Shintaku Y; Imai Y; Wakamatsu A; Takahashi S; Ito Y; Takano-Yamamoto T; Thesleff I; Yamamoto M; Yamashiro T
    Dev Biol; 2009 Feb; 326(2):392-402. PubMed ID: 19000669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PI-3 kinase activity is required for epithelial-mesenchymal transformation during palate fusion.
    Kang P; Svoboda KK
    Dev Dyn; 2002 Nov; 225(3):316-21. PubMed ID: 12412014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation.
    Vaziri Sani F; Hallberg K; Harfe BD; McMahon AP; Linde A; Gritli-Linde A
    Dev Biol; 2005 Sep; 285(2):490-5. PubMed ID: 16109396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinoic acid-induced alterations in the expression of growth factors in embryonic mouse palatal shelves.
    Abbott BD; Birnbaum LS
    Teratology; 1990 Dec; 42(6):597-610. PubMed ID: 2087681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.
    Liu Y; Wang M; Zhao W; Yuan X; Yang X; Li Y; Qiu M; Zhu XJ; Zhang Z
    J Dent Res; 2015 Jul; 94(7):961-7. PubMed ID: 25922332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice.
    Okano J; Suzuki S; Shiota K
    Toxicol Appl Pharmacol; 2007 May; 221(1):42-56. PubMed ID: 17442359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an organotypic stem cell model for the study of human embryonic palatal fusion.
    Wolf CJ; Belair DG; Becker CM; Das KP; Schmid JE; Abbott BD
    Birth Defects Res; 2018 Oct; 110(17):1322-1334. PubMed ID: 30347137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Establishment of palatal organ culture model of C57BL/6J mouse embryos in vitro].
    Zhang DZ; Zhuang CZ; Xiao WL; Xu YX; Wang SY
    Shanghai Kou Qiang Yi Xue; 2013 Apr; 22(2):132-6. PubMed ID: 23708022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental fusion of the naturally cleft, embryonic chick palate.
    Ferguson MW; Honig LS
    J Craniofac Genet Dev Biol Suppl; 1985; 1():323-37. PubMed ID: 3877107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix metalloproteinases have a role in palatogenesis.
    Brown NL; Yarram SJ; Mansell JP; Sandy JR
    J Dent Res; 2002 Dec; 81(12):826-30. PubMed ID: 12454096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.